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PROJECT OVERVIEW/SUMMARY/ABSTRACT 

The focus of this project is applying the latest software technologies to hardware by 

building an autonomous car that will be trained using video data. The autonomous car is 

capable of making decisions using deep learning models in tandem with the Intel Realsense 

camera that is capable of extracting the depth information as well as colour information. The 

car is trained and tested on modular roads that can be rearranged to create diversified paths. For 

the training, unique models were created that separates us from the rest. 

The project timeline includes 5 work packages. The project progress includes the 

reports, presentations, and the literature survey. Hardware package includes the design and 

culmination of the remote-controlled car using the electronic equipment and handling the 

communication. Dataset preparation is the third package responsible for the creation of the 

modular roads and the train and test datasets. Deep learning package is for the development 

of our own dataset alongside the train, test, inference. Finally, the optimization is for 

increasing the speed and accuracy of the models. 

First three work packages were successfully completed by reviewing 15 articles, 

having a car that can finish 5 consecutive laps on the modular roads, and having a dataset of 

40 thousand frames in total respectively. For the fourth package the project aimed to achieve 

a classification accuracy of 95 percent, a line keeping rate of at least 96%, real time 

inference, and an avoidance rate of at least 98%. Also, the majority of the elements should be 

on the diagonal part i.e. the true positive section of the confusion matrix. Last package was 

accomplished by the fastening of inference and trying a pretrained model in tandem. 

Some problems in the hardware section that we were not familiar with delayed the 

project progression, however, by persevering and handling the other familiar sections 

simultaneously, we were able to finish the project on time successfully. 

Keywords: autonomous car, video trained car, deep learning, CNN, remote controlled car, 

modular roads, dataset creation 
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1. OBJECTIVE OF THE PROJECT: 

 

An autonomous car is a type of car that can navigate around all by itself using AI algorithms for 

the purposes of decision making. To infer on the situation on the outside world, the received data from 

the cameras and other types of data from the sensors are utilized. To create a reliable dataset, engineers 

collect a wide array of videos that record various occurrences on the real world. Then they label each 

frame and feed them into the training pipeline to obtain a model that tells the car how to behave in certain 

situations. After the end-to-end training of the AI vehicle is completed and properly tested, it is ready to 

drive autonomously on real roads without the help of a human driver. Our project takes these video 

trained AI and autonomous navigation concepts and applies them to a remote controlled toy car with 

self-created roads. Our objectives are as follows: 

 

Our objectives are as follows: 

 
1) Developing a finished autonomous car system that can drive around paths of our 

modular roads. 

 

2) Creating a dataset of that consists of many different paths by using our modular roads. 

These roads are puzzle-like in design with interlocking parts and repeating sections so 

that they can be substituted swiftly and create a complete path. 

 

3) Achieving performance of at least 25 FPS, that corresponds to real-time, on the Jetson 

Nano platform to make sure that the car can respond quickly to changing stimulus. 

 

4) Ensuring that the car follows the road with utmost accuracy and reliability. 
 

 

5) Developing the ability to avoid or bypass multiple moving toy cars and pedestrians. Therefore, 

demonstrating the autonomous car's ability to react to changing road conditions instead of just 

predictable road detection. 
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2. LITERATURE REVIEW: 

 

2.1. Evaluating Deep Learning Algorithms for Steering an Autonomous Vehicle 

 

 The project that this paper is written for has very similar objectives and methods with 

our project. The aim of the developers was to build an autonomous car which can drives itself 

in an indoor environment without crashing obstacles. The equipment used in this project is 

Raspberry Pi Model B+, a microcontroller and a camera. Dataset was generated by developers 

by driving the car manually by a remote controller. Dataset consisted of the frames captured by 

the camera and corresponding commands sent by the remote controller. A virtual machine was 

used for training which is Amazon EC2. Pretrained models were preferred which were 

Xception, VGG16 and MobileNet. The neural network was not embedded to the car. They used 

a different computer to locate the neural network. When the car captures a frame, it was sent to 

this computer to be classified, then the output which was the steering angle is sent back to the 

car. Two types of evaluation was performed in this project. In quantitative evaluation, accuracy 

of the model was tested. Best accuracy was obtained by an Xception model which was 81,19%. 

In qualitative evaluation, they recorded amount of collisions and see if the car can actualize the 

outputs of the neural network and they reached an average crash avoidance rate of 78.57. [1] 

 

 

2.2. Real-Time Self-Driving Car Navigation Using Deep Neural Network 

 

 The paper is proposing a project that is aiming to build an autonomous car controlled 

by a convolutional neural network that can predict the correct steering angles by the real-time 

RGB frames that the car's camera captures. In the project, car was built by the using the 

following hardware: Raspberry Pi 3 Model B , a camera and a RC car, Arduino Uno. Data 

collection method was done by driving the car manually. While driving the car, RGB frames 

from the camera were recorded with the steering angle commands sent by the developers at the 

same time. When the dataset that consisting of  RGB frames which were labeled by 

corresponding steering angle command were generated, it was enlarged by data augmentation. 

After that a convolutional neural network was built by using TensorFlow and Keras libraries of 

Python programming language and it was trained by the dataset consisting of more than 35.000 

instances. Neural network performed perfectly by giving an accuracy rate 89% on the validation 

data. Next step was testing the car on an actual road. Despite the camera latency, car performed 

perfectly on the road as well. [2] 
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2.3. End to End Learning based Self-Driving using JacintoNet 

 

 This paper concentrates on a technique called end-to-end learning and uses this 

technique to build an autonomous car in a virtual environment. The technique is deeply 

explained in the paper and implemented by using a network called JacintoNet. In the project, 

data was gathered by driving the car in the virtual environment for a very long time. Driving 

was done in various conditions. Aim was to obtain the data which includes desired steering 

angle and speed for the images that the car's camera captured while driving. At the end of the 

data gathering process, more than 200.000 samples were used to train the network. The 

performance was observed by comparing the path of the car that is followed during testing with 

the ground-truth path. The network performed perfectly. Then, it was compared with one of the 

most popular networks used to deal with image inputs. Their performance was very similar. 

The project shows that networks that are not complex like the one that is used in this project is 

doing a great job on end-to-end learning technique. [3] 

 

 

2.4. Design and Implementation of Autonomous Car using Raspberry Pi 

 

 Ways to build a self-driving car by combining most of the popular detection algorithms 

were discussed and implemented in this paper. The car was built on top of a Raspberry Pi chip. 

The main idea was building the car that can be driven by a remote controller and to be fully 

controlled or to be assisted by latest autonomous technologies. A mobile application was 

preferred to drive the car. Prevention of the car from crashing obstacles while driving was 

provided by a ultrasonic sensor. Lane detection was done by combining and getting the best 

features of two commonly used lane detection algorithm which are future based and model 

based. Image processing was done by taking every detail into consideration to increase the 

efficiency. For navigating the self-driving car, manual driving was performed in various 

conditions. Prevention from obstacles and navigation parts allowed the car to be fully 

autonomous. The algorithms were successfully implemented to the car and the target was 

achieved. A neural network was not used in this project but very wise approaches on processing 

of image inputs that also can be used in our project broadened our horizons. [4] 

 

 

2.5. End to End Learning for Self-Driving Cars 

 

 This paper was distinguished by its way of implementing end-to-end learning method 

to real cars. Purpose of this project was building a convolutional neural network that can predict 

the correct steering angle directly from the visual inputs obtained by the camera located to the 

front of a car. With the followed method, intermediate steps like lane following, object detection 
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were skipped and the learning was only done by the raw image inputs. To be able to gather the 

training data and match the captured images with correct steering angle inputs, car was driven 

by a human driver on different roads in different cities. After the data was gathered, the neural 

network was built which is consisting of 9 layers. Human driver's steering angles were 

considered as ground truth values and the aim was minimizing the mean squared error between 

neural network's steering predictions and ground truth values. Evaluation of this network was 

done in a simulation before taking the car to real world. In the simulation, network was tested 

by the recorded videos of real world scenarios. Thanks to simulation, developers had the chance 

to find out what will happen if the neural network was driving the car. When it was decided that 

the neural network's performance was pretty satisfying. The neural network was embedded to 

a real car, with the help of advanced equipment that is used in this project. The car drove itself 

perfectly on the roads of US. [5] 

 

 

 

2.6. Comparison of Machine Learning Algorithm’s on Self-Driving Car Navigation using 

Nvidia Jetson Nano 

 

 Comparison of three machine learning algorithms on an autonomous car was aimed in 

this paper. These algorithms were SVM, ANN-ML and CNN-LSTM. To compare their 

performance an autonomous car was built with the equipment of a Jetson Nano, a 

microcontroller and a camera. Data which were image inputs were gathered by driving the car 

manually to train the models. A mini road was designed to test the car with stated algorithms. 

Algorithms were tested for three different scenarios and in three different car speeds. Obstacles 

were also included in two of the scenarios. At the end it was observed that CNN-LSTM 

algorithm was giving the best result in all speeds of each scenarios. [6] 

 

 

 

2.7. Real-Time Control Using Convolutional Neural Network for Self-Driving Cars 

 

 This project was aiming to building an autonomous car by end-to end approach. Car 

was built on top of a Jetson Nano processor. Data gathering was performed by manual driving. 

Gathered data includes the RGB images and corresponding steering angles. MobileNet was 

used in convolutional architecture. After training of the neural network, the model was tested 

to see if it can predict the correct steering angles when different RGB images of roads were 

given. Before testing the model by embedding it into the car, it was tested in a computer 

environment. When it was seen that the accuracy was good enough, the car was tested on the 

road. The obtained test accuracy on the road was approximately 85%. [7] 
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2.8.  A Convolutional Neural Network Approach Towards Self-Driving Cars 

 

 An autonomous vehicle was designed in this project. Purpose was having the car 

predicting the desired steering angles directly from camera inputs. A convolutional neural 

network was used for this goal. The network was trained on the dataset by NVDIA and Udacity. 

These datasets were including road frames and correct steering angles. For processing the 

dataset, advantages of Robotic Operating System were used. Car was built by using these main 

components: Rasberry Pi 3B, a web camera, ultrasonic sensors. Ultrasonic sensors were used 

to avoid obstacles. After the network was trained, it was tested on a dataset provided from 

University of Cambridge on a simulator. Developers obtained an autonomy of 86% 

approximately. [8] 

 

 

2.9. Deep learning algorithm for autonomous driving using GoogLeNet 

 

 The paper compares the best 3 CNN’s from competitions that are about feature 

extraction to find the best model that works for autonomous driving. According to results, that 

model turns out to be GoogLeNet. Based on this model, the researchers propose a deep learning 

algorithm named as GoogLenet for Autonomous Driving (GLAD). [9] 

 

 

2.10. Autonomous Car Driving Using Deep Learning 

  

Most other research uses complex models which make it more expensive to achieve good 

results. This paper goes in the opposite direction and uses simple models like vanilla UNet/FCN 

which makes it less costly but still yields good results. Their model works on real cars after 

getting trained using CARLA driving simulation. [10] 

 

 

2.11. Autonomous car using CNN deep learning algorithm 

 

 This article uses deep learning algorithms of CNN to that learns the suitable output for 

driving inputs to obtain an autonomous navigation system. Dataset is created on an open 

simulation system that is the teaching grounds to the AI. The model gives the steering 

commands after receiving the centre camera inputs. [11] 
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2.12. DeepPicar: A Low-Cost Deep Neural Network-Based Autonomous Car 

 

 DeepPicar is a small replica of the autonomous car DAVE-2 that uses deep CNNs that 

take the input frames from the camera, feeds it to the model, and obtains the steering angles. 

The replica car also uses the same architecture but it is a lower cost to train and test to car since 

it is a toy car that can drive around simple small-size roads. They show that Raspberry Pi can 

handle real time control of end-to-end deep learning models with its limited computing 

capabilities. [12] 

 

2.13. End-to-end Learning of Driving Models from Large-scale Video Datasets 

 

 This paper aims to create a robust perception-action model. They teach the motion 

model using large resources of video data and create an end-to-end deep learning model. Their 

model incorporates FCN-LSTM architectures which is compatibly trained with the video 

dataset they acquired. This results in a model that can predict which action to take in which 

situation on real roads with real cars. [13] 

 

 

2.14. Deep Learning Techniques for Obstacle Detection and Avoidance in Driverless Cars 

 

 This article is written by the intent to add to the smart cities by turning the cars into IoT 

devices that can drive autonomously. The experiments work with a small RC Raspberry Pi car. 

They command the car from their phones during the training section to create the dataset like 

our plan. Then they used a CNN architecture to obtain the final results that were around 89%. 

[14] 

 

 

2.15. Multi-task deep learning with optical flow features for self-driving cars 

 

 The article offers to use optical flow to acquire better accuracy with autonomous cars. 

“The flow predictor, as a self-supervised deep network, models the underlying scene structure 

from consecutive frames and generates the optical flow. The controller, as a supervised multi-

task deep network, predicts both steer angle and speed.” They also predict and make use of 

depth information. [15] 
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3. ORIGINALITY:  

 

In this project, traditional ways were not followed. Originality of the project starts from 

generating the dataset and applies to each step. Overall progress will be briefly explained here 

to give a better idea of originality, all the methods will also be explained in detail in part-4. 

 

To generate the original dataset, car was driven manually by a remote controller on the 

roads that were be designed by the project team. While driving, frames that the car was facing 

were recorded by the camera. Simultaneously, corresponding commands which were sent from 

the remote controller were also recorded. These commands were the speed values of left motors 

and right motors of the car which allows the car to both adjust speed and steering angle. Frames 

were labeled by matching these speed values and corresponding frames. As a result, a dataset 

was obtained which tells us which commands are needed to be followed in all possible scenarios 

that the car may come across. Also, the depth information of each frame was included in this 

dataset. Depth information of each frame were easily obtained because the camera that was 

used in the project is Intel Real Sense Camera with Depth Vision. This camera gave us the depth 

information of each image. This depth information was matched to the corresponding RGB 

frames and were used to avoid our car from obstacles.  

 

Our way of gathering data can rarely be seen in existing projects but depth information 

implementation to this method forms a unique blend that was not used in any other projects 

before. Usually, autonomous car projects are following very similar strategies. It is very 

common to see an autonomous car that is following lanes and behaving in accordance. In this 

project, the car was designed in such a way that it will be trained by its manual experiences. 

Huge online datasets are being used to train the car but in this project the dataset is original. 

Usually, a lidar sensor is used to avoid obstacles by depth information, but instead of using a 

lidar, Intel Real Sense Camera was used which gave us the chance to obtain RGB frames and 

depth information form the same source. This approach of the project team increased the 

efficiency and enhanced the originality. Furthermore, unlike existing projects that are using 

pretrained models, project team built their unique neural networks. These neural networks were 

trained by using the all the mentioned information that forms the dataset. After the training was 

completed, project team obtained the neural networks which were able to decide on the desired 

steering angle and speed when an RGB frame and its depth information is given. And by using 

this neural network, the car had the ability to drive itself safely in all possible scenarios.  

 

Another originality of this project was the modular roads that were built for training and 

testing purposes. These roads were designed like a giant puzzle. So that by combining different 

pieces, project team were able to train and test the car on many different roads. 
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4. SCOPE OF THE PROJECT AND EXPERIMENTS/METHODS:  

 

1) Wireless connection of the remote controller 

This is required for the seamless control of the car on the paths during the data collection 

section. The added nRF24L01 module allows for the wireless transmission of data between the 

remote controller and the toy car, while the Arduino joystick shield provides the input for the 

movements of the car. 

 

To get this setup to work, a lot of effort had to be expanded since our nRF24L01s broke 

down from the start. Different types of codes that tries to send basic numerals through the 

communication channel all the way to different joystick communication codes for car control 

were tested. In total more than 10 types of codes were tested and the result was not changing. 

During this process, all types of different combinations for the electronic equipment was tried. 

For example, the Arduino Leonardo’s were swapped with Arduino Uno, nRF24s were 

interchanged between each other. The cables were tested to understand if there was a physical 

contact issue. Capacitors were added from a breadboard to regulate the power flow. ESP32 

modules were brought as a substitute.  

 

In the end, none of the codes alongside with changed electronic trials resulted in a data flow. 

This cemented in our minds that the fault was on the nRF24s themselves since all the codes 

worked on other users. It was only possible to test this hypothesis when the new modules arrived 

at school though, and since we had to solve this issue before progressing to other topics, a lot 

of weeks were wasted in the first semester. 

 

After the new nRF24s arrived, the problem was solved, and the remote controller Arduino 

codes were tweaked for it to work with the car effectively. In the beginning, the Joystick values 

were continuous from 0 to 680, however, when the car was ridden for testing, it was seen that 

our remote controller and motors were not sensitive enough to register the differences in the 

joystick inputs. This caused a change for the input scheme from the joystick to specific 

numbers, and change the regression problem to classification. 

 

2) Connecting Intel Realsense camera for the RGB and depth 

Making the Intel Realsense camera work with our model and car is an important part of our 

project since the depth sensory information is necessary for the originality of our project. The 

camera works alongside the Jetson Nano, so we connected the camera using its connection cable 

to the Jetson Nano and started to work on it. It was not just possible to install using commands 

like pip install since Jetson Nano is based on an ARM64 processor unlike typical computers 

that generally uses x86. This was also the reason a different version of Arduino had to be 

installed. Firstly, Archiconda was to be downloaded since regular anaconda does not work 
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either. It was used to create a new environment. The steps in the following website by Lieu 

Zheng Hong [16] were followed that combined and explained in more detail the main Github 

pages for downloading and implementing the intelrealsense2 for python. However, after 

following it to the end, at the testing part, some errors arose that were caused by the conflict 

between the virtual environments. The process was restarted after going to base environment, 

deleting the archiconda environments, and correcting the CMake versions. However, because 

of the partitions there was a limited space, and when it filled all the way without the complete 

installation, the device was formatted and its disk space partition increased. On this try, the 

method worked, and we had in our hands a camera that records RGB as well as depth 

information that is useable through python scripts. 

 

However, when the project was close to the end, and the time for inference came, it was 

seen that the camera working with python2 was not compatible with the other parts working in 

python3. It was seen that most people had a hard time applying the intelrealsense2 to python3, 

and it was not innately compatible. After exhausting trials and research though with the correct 

commands and folders in the right places, the camera started to work with python3. 

 

3) Mounting and connecting the modules 

Assembling the car and making it useful in terms of deep learning purposes was a scope 

component. The base for the car was already built when the project started from previous 

projects, so it had motors and wheels and a plastic skeleton. On top of this, the Arduino Uno 

and Uno shield, Intel Realsense camera, and Jetson Nano was mounted. For the protection and 

mounting process of the Intel Realsense camera and the Jetson Nano, specially designed plastic 

encasings were 3D printed. For communication between the remote controller and the car, the 

nRF24 was used as mentioned. For the Arduino and Jetson, a direct connection was used. 

Camera and Jetson were also connected using the camera’s connection cable. 

 

 Two 7.4 V Lipo battery with 2 cores, 2200 mAh, and 35C was used for powering the 

Jetson Nano and motors individually. Jetson Nano requires the voltage to not exceed 5 V, so a 

DC convertor was used to limit the voltage given. The camera and Arduino Uno takes the power 

necessary from the connection to Jetson Nano. When nRF24 was present, it took power from 

this battery by its connection to the Arduino Uno. Other battery is directly connected to the 

motor driver to power up the motors for the car to move.  

 

 

 

 

 

4) Dataset Generation 
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4.1 Gathering data: 

 

 After the car was built and desired functionalities obtained, project team worked on data 

gathering. First step was building the modular roads. Puzzle-like playing mats were used to 

provide the modularity. By covering one surface of the mats with black cardboard and taping 

white lanes on top of them, 16 unit of playing mats were shaped in a way that they can form 

various paths when combined. Some of the constructed paths for data gathering are given 

below. These paths are only used to gather "forward", "right" and "left" labelled RGB frames. 

No obstacle were used on these paths.  

 

Forward label corresponds to the left and right motor speed values of 155, 155; respectively. 

Right label corresponds to the left and right motor speed values of -100, 160; respectively. 

Left label corresponds to the left and right motor speed values of 160, -100; respectively. 

 

        Figure-1: Training path-1                            Figure-2: Training path-2 

                          
 

                Figure-3: Training path-3                        Figure-4: Training path-4 
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To gather the "stop" labelled depth data, various obstacles were put in front of the car 

while the speed values of the motors were both 0. An image representing the way of gathering 

this data is given below. 

        Figure-5: Depth information gathering 

 
 

 

An instance of each label is given below: 

 

    Figure-6: Forward labeled - RGB                     Figure-7: Left labeled - RGB                                          
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     Figure-8: Right labeled - RGB                         Figure-9: Stop labeled - Depth                                          

 
 

All the frames were saved into a couple fundamental folders while driving the car. The 

image names and speeds were recorded into csv files for each folder. After deleting the faulty 

frames, all of the frames and csv files were merged individually. 

 

4.2 Data augmentation: 

After the raw data was gathered, data augmentation was done by flipping "right" and "left" 

labeled frames to increase the dataset even more and have a much more balanced one. 

Augmentation is represented below. 

 

      Figure-10: Left labeled (before flipping)           Figure-11: Right labeled (after flipping)                                          

      
 

4.3 Preprocessing: 

 

After the raw data was gathered, preprocessing was done. First of all, each image was 

resized to 64x64 from their original size 640x480. After rescaling, all images were converted 

to gray scale including the depth images since its coloring is artificially done and initially it is 
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in grayscale. RGB frames were also converted since our roads are black and white, and colour 

information does not add anything fruitful. Finally, the upper 14 pixel of images were cropped 

to prevent misleading information make the car deciding easier. Each step of preprocessing is 

given below. 

 

      Figure-12: Raw image                                          Figure-13: Rescaled image                                          

        
 

     Figure-14: Gray scaled image                          Figure-15: Cropped image                                       

            
 

 

To create the labels, image names were used to match the images and wheel speeds from the 

csv file. Afterwards, each type of wheel speed was changed each one into a classification 

number, for example (0,0) speed was changed into the label 0. While a single model was used, 

the structure of the npy file was as follows: 
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Figure-16: Dataset Representation 

0 RGB FRAMES DEPTH LABEL 

1 [ RGB image array ] [ Depth Array  ] Number from 0 to 4 

... ... ... ... 

 

However, when two model structure was getting worked on, raw dataset was split into two 

different npy files one for RGB and one for depth: 

 

                  Figure-17: RGB Representation 

0 RGB FRAMES LABEL 

1 [ RGB image array ] Number from 0 to 3 

... ... ... 

 

                 Figure-18: Depth Representation 

0 DEPTH FRAMES LABEL 

1 [ Depth image array ] 0 or 1 

... ... ... 

 

 

While creating these files, for RGB the (0,0) speed frames were excluded and the wheel 

speeds were changed into 0-1-2 for forward, right and left. For the depth, if the speed was 0, it 

was labeled as 0 i.e. stop, and otherwise, whether it was forward, right, or left, it was still labeled 

as 1, so go. 

 

For the testing dataset a similar approach was followed. Different paths were created so that 

there is not a cross pollination between the train and test sets, and the results are not misleading. 

A couple examples of test paths is given below. 
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Figure-19: Testing path -1   Figure-20: Testing path -2 

 
 

After following the same process as the training preprocessing, in the end, two different npy 

files were obtained with the same structure as the train dataset for the two models and one npy 

file for the single models. 

 

 

 

5) Building Neural Network 

When the dataset with more than 50.000 frames was generated, next step of the project was 

to build the best performing neural network(s). The priority of the project team was to use their 

own unique model which was achieved at the end. Best performance was obtained by using 2 

convolutional neural networks; one for classifying depth frames to decide on when to stop and 

when to go, one for classifying RGB frames to decide on where to go. All the models were built 

by using Keras library of Python programming language. The progression of the training was 

observed from either the CMD or the python console and plots sections. During an exemplary 

training as below, the epochs and the graphs would be simultaneously watched to see how the 

training was going. 

 

 

 

 

 

 

 

 

Figure-21: method of training 
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Depth model was trained by using only depth frames. Depth frames which were captured 

when there was no obstacle in front of the car belonged to class-0 which stands for "go", depth 

frames captured when there was an obstacle in front of the car belonged to class-1 which stands 

for "stop". This network consists of a normalization layer followed by 3 convolutional layers 

and 1 fully connected layer with 100 neurons. After each of these 4 main layers, a dropout layer 

with the dropout rate of 0.3 was added and after second and third convolutional layers 2D max 

pooling layers were added with pool size (2,2). Convolutional layers all have the kernel size of 

(3,3) and their filter numbers are 24, 32 and 64 respectively. Representation of the model is 

given below. 

 

Figure-22: depth model photo 
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RGB model was trained by using only RGB frames which were captured when the car 

was being driven. There are 3 classes that this convolutional network tries to predict correctly: 

Class-0 which stands for "forward" with corresponding right and left motor speed values of 

(155,155), Class-1 which stands for "right" with corresponding right and left motor speed 

values of (-100,160), Class-2 which stands for "left" with corresponding right and left motor 

speed values of (160,-100). This network consists of a normalization layer followed by 3 

convolutional layers and 1 fully connected layer with 100 neurons. After each of these 4 main 

layers, a dropout layer with the dropout rate of 0.3 was added and after first and second 

convolutional layers 2D max pooling layers were added with pool size (2,2). Convolutional 

layers all have the kernel size of (3,3) and their filter numbers are 32, 64 and 128 respectively. 

Representation of the model is given below. 

 

 

Figure-23: RGB model photo 

 
 

Both of these models were then converted to TensorFlow Lite (TFLite) models to have 

the light-weighted version of each model and to increase the input processing speed. TFLite is 

a framework that converts a TensorFlow model to an optimized version of itself in terms of 

speed and storage. 

          

Logic behind this structure with 2 neural networks is as follows: When an RGB frame 

and its depth information was captured by the camera. First the depth information was 

processed by the first model explained above. If the depth information is classified as class-1 

which means "stop", this means there is an obstacle encountered and both right and left motor 

speed values are set to 0 and the car stops. If depth information is classified as class-0 which 

means "go", corresponding RGB frame of this depth information become processed by the 
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second model explained above. If the RGB frame is classified as class-0, class-1 or class-2, the 

car moves forward, turns right or turns left, respectively, by setting the corresponding motor 

speed values of each class which are also mentioned above.  

 

Before concluding on this 2 modeled structure. various approaches have been tried to 

solve the classification task with optimal results. First approach was trying to make the 

classification by using a single model. Project team worked on two variations of this approach. 

One was feeding the model with multiple input, RGB and depth frame, and obtaining a single 

output for prediction of all 4 classes. The other one was feeding the model with multiple input 

and obtaining multiple output, similar logic to the one with 2 modeled structures, but a merged 

variation of it. All these approaches performed poorly either in testing or inference. After these 

models MobileNet model have been tried by adjusting the frozen layer number over and over 

but desired outcomes have not been achieved even with this pre-trained model. As a result, 

project teamed decided on using the 2 modeled structured and obtained the results meeting 

success criteria. All performance rates of each tried model are given in part-10. 

 

Another approach that was tried to improve the performance was using keras-tuner. 

Keras tuner is a library of Keras that is responsible for creating different models by testing 

different parameters randomly, and possibly leading to better model parameters without trying 

each parameter by hand. For this section, both different keras tuner modes and parametrizing 

different parts of the model were tested. 

 

Three different keras tuner modes were tried: RandomSearch, Hyperband, and 

BayesianOptimization.  

The RandomSearch tuner randomly selects hyperparameter combinations from a user 

defined search space. This is more useful than grid search that systematically chooses 

hyperparameter combinations since somewhere in between the grids a better value can be 

hidden. Therefore, grid search was eliminated, and the search started with randomsearch. [17] 

 

The Hyperband tuner halves the models at each run step to efficiently allocate resources 

during the search. It trains multiple models simultaneously with different hyperparameter 

configurations, getting rid of poor performance models, and allocating more resources to better 

models. This type is better if there is limited time and resources. [17] 

 

The Bayesian Optimization tuner uses Bayesian algorithms to intelligently explore the 

hyperparameter search space. It creates a probabilistic model of the objective function and uses 

it to find the most promising hyperparameter configurations for evaluation. This method is 

efficient since it builds up on previous information gathered. [17] 
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While testing with keras tuner, at different times different parameters were chosen to be 

searched upon. In the beginning, a couple parameters like the number of filters in the 

convolution layer and number of units in dense layers were chosen as the parameters. As the 

time went on, more parameters were added to explore upon. These tuners could even decide on 

adding how many convolution layers and max pooling layers, effectively building different 

types of models at each pass. They could even choose the kernel size, regularization parameters 

etc. 

 

Neural neural networks have been tested in two ways using our test roads: 

 

Quantitative Evaluation: In this method, theoretical performance has been evaluated. This is to 

check if the neural network is giving the correct output value when the RGB frames and depth 

information is given. This evaluation has been done by using matplotlib and scikit libraries for 

the confusion matrix and the model evaluation metrics respectively. 

 

Qualitative Evaluation: In this method, practical performance has been evaluated. Number lane 

violations and obstacle crashes recorded by hand and percentage of car's ability to drive safe 

has been be calculated. 

 

 

 

 

5. PROJECT TARGETS AND SUCCESS CRITERIA: 

 

Work package 1 – Literature review 

 

Success can be measured by reviewing 15 different articles. We successfully completed 

this section by investigating 15 articles. 

 

Work package 2 – Hardware 

 

For the successful completion of the hardware section, firstly, all the hardware modules 

have to be chosen to be compatible and placed on the skeleton of the car. The modules should 

be able to communicate in real time and work harmoniously for both the data collection section 

and the inference section. In addition, we should be able to drive the car manually for at least 5 

consecutive laps. All of this was accomplished in the end by writing the correct codes and doing 

enough testing. 
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Work package 3 – Dataset Preparation 

 

For this part, the collection of at least 20 thousand frames of RGB and depth images 

individually by driving the car manually is required. The frames should be preprocessed to be 

effective for training. We have done this by driving the car around the modular roads, recording 

the images, and preprocessing and data augmenting by our codes. In the end, we have around 

50 thousand frames, more than the double of the success criteria preprocessed and fed to the 

model.  

 

Work package 4 – Deep learning 

 

Firstly, the classification accuracy of the deep learning model should be higher than 95% 

for the model to work properly on our modular roads. Accuracy is described as the ratio between 

the correctly labeled photos, the true positives and the true negatives (TP and TN) to the whole 

of the dataset which also includes false negatives and false positives. In short, accuracy is 

 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

A higher accuracy is needed in our case so that the correctly labeled photos are more 

abundant than the other ones which results in a better working model. In our case, the average 

accuracy was up to the standard due to correct training. 

 

Confusion matrix is a type of table that has the actual labels in the left and the predicted 

ones on the top. This way the correctly labeled photos are in the diagonal, and it is possible to 

see how the model gets confused between different labels. When the majority of the results is 

in the diagonal, it is possible to say the model is efficient at correctly classifying images. 

 

The line keeping rate measures how well the car is able to stay within the created road lines 

while driving. A pretty high line keeping rate is important for the car to not go out of bounds 

all the time which would create a non-safe environment and non-properly working output 

product. That’s why the cut-off value for the average line keeping rate was agreed as 96%. This 

will be calculated by conducting 50 runs on different paths, recording any line violations that 

occur, and averaging the value. 

 

 Our next target is about the efficiency of the car. Car has to work in real time while 

operating deep learning algorithms on a Jetson Nano. The Jetson Nano's lower processing 

power and lower number of GPU cores compared to a regular computer GPU will handicap the 

complexity of the model. This will limit the model types that can be used in the car whether it 
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is a prewritten model or our own. It will be important to carefully consider the model's number 

of parameters, number of layers etc. and simplify and make the process more efficient if the 

processing gets alarmingly slow. 

 

The avoidance rate of cars and pedestrians should be at the very least 98%. Since this 

rate is a measure of how well the model is able to avoid obstacles i.e. other cars and pedestrians 

while driving, a high avoidance rate is of importance to the safety of the vehicle, its passengers, 

and the pedestrians. 

 

Work package 5 – Optimization 

 

The car has to work on 25 FPS as mentioned and if the deep learning part is not enough to 

meet this criteria optimization part will come into play. For the optimization to be successful, 

TFLite will be added to the end of the model pipeline which makes the model more lightweight 

and the inference faster. 

 

6. RISKS AND B PLANS:  

Table 1. risks and b plans 

  

Work Package # Risk B-Plan 

WP 2 Electronic equipment broke 

down. 

We stocked extra equipment and 

bought new ones when needed 

WP 3 Insufficient dataset was 

encountered 

We diversified the roads and added it to 

our dataset. Also, data augmentation 

was used. 

WP 4 Model not achieving the 

expected performance 

Our models achieved the expected 

performance. 

 

 

7. WORK TIME PLAN OF THE PROJECT:  

 

Literature Review work-package was done at the beginnings of each semester and 

through the end of the second semester, when it was time to work on deep learning models. 

Hardware work-package took much more time than expected due to failures of electronic 

equipment. This was the first expected risk of this project as it is mentioned in part-6. The 

biggest problem was regarding the nRF24L01 modules which were used to provide to 
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communication between remote controller and the car. nRF24L01 modules kept burning and 

causing inconsistencies and project team needed to stock new ones. Another problem occurred 

was regarding the powering of Jetson Nano computer. External batteries were not enough to 

power Jetson Nano to run a neural network while all the peripherals like Arduino Uno and Intel 

RealSense Camera were on. So, the project team decided to switch to Jetson Xavier platform, 

a more powerful platform and suitable to the powering way that was tried on Jetson Nano. So, 

all the setups were done on Jetson Xavier one more time. However, after a while a failure 

occurred on the ports of Jetson Xavier and it needed to be sent to warranty. As a result, project 

teams had to switch back to Jetson Nano platform and solved the powering problem by 

powering Arduino platform and Jetson Nano separately. This platform switching costed project 

team 3-4 weeks. Because of these problems, hardware work-package which was started at the 

4th week of semester-1 was completed at the 10th week of semester-2. Dataset preparation 

work-package was done in 2 steps. First step took first 2 weeks of the semester-2 where project 

team construct the modular roads which is one of the primary originalities of the project. Second 

step which is data gathering by manually driving the car and preprocessing of the data was done 

when the Hardware work-package was completed and it also took 2 weeks. Deep learning work-

package started at the 10th week of semester-2 and continued until the end of the project. This 

work-package was mostly done in parallel with the optimization work-package which was done 

in last 3 weeks of the project. This work time plan is shown in Table 1 and Table 2 at Part 16.  

 

All team members shared the workload of each work package equally. Completion rate 

and measure of completion of each work-package is given below. 

 

 

WP-1 Literature Review:  

Completion Rate: 100% 

Measure of Completion: Reviewing 15 articles and having enough knowledge of the works and         

approaches done before. 

 

WP-2 Hardware:  

Completion Rate: 100% 

Measure of Completion: Being able to drive the car manually by obtaining RGB frames and 

depth information by the camera for at least 5 consecutive laps. 

 

WP-3 Dataset Preparation:  

Completion Rate: 100% 

Measure of Completion: Obtaining a dataset consisting of at least 20 thousand frames and 

preprocessing it to make it ready to fit neural networks. 

 



                         Istanbul Medipol University           

                School of Engineering and Natural Sciences  
                                    Graduation Project 

22 

 

 

 

WP-4: Deep Learning: 

Completion Rate: 100% 

Measure of Completion: Making the car going on random roads and avoiding obstacles 

autonomously using Convolutional Neural Networks by achieving the proposed accuracy, lane 

keeping rate, avoidance rate and obtaining a confusion matrix with majority of the results in the 

diagonal. 

 

 

WP-5 Optimization:  

Completion Rate: 90% 

Measure of Completion: Trying pre-trained models, increasing the speed of the car and being 

able to process 25 frames per second. 

 

WP-5 is not 100% completed because the neural network is able to process 15 frames per 

second while the success criteria is 25. Reasons of this unmet success criteria is discussed at 

part-11. 

 

 

 

 

8. DEMO PLAN: 

 

The demo of our project will be using our physical car and self-generated roads. For the 

demo, the teachers will be given the chance to create a path using our modular roads in 

whichever way they desire. Next, the car will be tested on this road that it may or may not have 

encountered beforehand. This increases the chances to demonstrate that the car is not trained 

for a specific couple of roads and instead can work on any kind of path, proving its versatility 

and adaptability. It is possible to test the car on two different roads in the given demo time to 

increase the chances of unforeseen paths. 

 

In addition to the testing of the car on the physical roads, there is also the possibility of 

demonstrating the test results on the computer test dataset. It will show that the car works 

sufficiently on all the paths that were created specifically for the test dataset. On top of that, it 

will give a better chance to see values of the accuracy, confusion matrix, average line keeping 

rate, and FPS. 
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9. FINANCIAL EVALUATION:  

 

Predicted total cost of the project was 14.555 TRY.  However, due to the need of new 

NRF modules to replace the burnt ones and extra material to design the road, required total cost 

increased to 15.070 TRY. Machine-Instrument and Material cost took 14.070 and 1000 TRY 

of the total, respectively. No cost was needed for People, Service and Travel categories. Inner 

distribution of Machine-Instrument and Material spending is given below. 

 

Machine-Instrument (14.070 TRY)                    Materials to Design Road (1000 TRY) 

Jetson Nano Development Kit: 5100 TRY               Playing mats         : 800 TRY 

Intel RealSense Camera          : 7500 TRY               Cardboard & Tape: 200 TRY 

Arduino Boards                 i     : 450 TRY                      

Voltage Regulator & Battery i : 610 TRY 

Remote Controller                 i : 110 TRY 

Wireless Connection Modules: 300 TRY 

Distribution of predicted and actual spendings, classified into 4 main categories, are also 

represented in Table 6 and 7, respectively. 

 

 

 

10. RESULTS:  

 

1. Literature review: 

 

The results of it can be seen in the second section of the report. It was helpful in our journey 

while deciding on the path to take for our project. 

 

2. Hardware: 

 

The connection scheme of our car can be seen in the figure below that lets the car work 

without any problems. When the dataset collection section is over, the remote connection 

module was removed. 
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Figure-24: Connection scheme 

 
 

The final look of our car can be seen in the photos below. 

                  

                  Figure-25: final car photos 

 
 

Jetson Nano 



                         Istanbul Medipol University           

                School of Engineering and Natural Sciences  
                                    Graduation Project 

25 

 

 

3. Dataset Preparation: 

3.1 Train dataset 

When the data gathering was completed the project team obtained a dataset as follows: 

 

Table 2. number of frames from each class 

Frame Label Count (RGB - Depth Pair) 

Forward (155, 155) 15.775 

Right (-100, 160) 5.691 

Left (160, -100) 8.626 

Stop (0, 0) 9.302 

TOTAL: 39.394 

 

When the data augmentation was done by flipping the right and left images, the final 

dataset was obtained given in the following table: 

 

 

Table 3. number of frames from each class after data augmentation 

Frame Label Count (RGB - Depth Pair) 

Forward (155, 155) 15.775 

Right (-100, 160) 14.317 

Left (160, -100) 14.317 

Stop (0, 0) 9.302 

TOTAL: 53.711 

 

3.2 Test dataset 

For the test set a similar process was followed. Initial frame numbers are given below: 

 

                       Table 4. test set raw data for RGB and depth 

Frame Label Count (RGB) 

Forward (155, 155) 3781 

Right (-100, 160) 1192 

Left (160, -100) 1462 

TOTAL: 6435 

 

 

    After data augmentation, the number of frames were equalized across the board for easier to 

read testing results. Final dataset numbers can be seen below. 

 

Frame Label Count (Depth) 

Others 6435 

Stop (0, 0) 3202 

TOTAL: 9637 
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             Table 5. test set finals 

Frame Label Count (RGB) 

Forward (155, 155) 2400 

Right (-100, 160) 2400 

Left (160, -100) 2400 

TOTAL: 7200 

 

4. Deep Learning 

Firstly, results for the best RGB and depth models will be discussed based on the training- 

validation losses and training-validation accuracies, evaluation results, and confusion matrices.  

 

4.1 RGB: 

For the trainings, generally, we had the early stopping mechanism that stopped the training 

whenever the val_loss did not decrease for a number of epochs. This prevented overfitting in 

the model as well as not wasting our resources. The training curve for the final RGB can be 

seen below. When the validation loss stopped decreasing and instead is having an upward curve 

with a value of 0.3 when the training is stopped as can be seen. Training loss is decreasing 

steadily and not plateauing meaning a good learning rate is chosen. Accuracy is increasing 

steadily albeit slowly until higher than 0.95 while validation accuracy is increasing even slower 

and stopping a little after 0.9, not reaching 0.95. Validation loss and accuracy is a little bumpy 

probably stemming from inconsistent dataset since when the car was nearing the road limiters, 

it had to be centered, hence right or left classifications on a straight road, and vice versa when 

turning. 

  

 Figure-26: the training- validation losses and training-validation accuracies 

 
From the scikit summary below it can be seen that the testing accuracy is 0.92. The accuracy 

did not change much from the training and test meaning the model did not overfit to the train 

dataset and performs well with unseen data. Precision and recall are high for the right and left 

classes, i.e. 1 and 2 respectively, but as it has struggles with the forward class, its values are 

lower. 

Frame Label Count (Depth) 

Left (160, -100) 3600 

Stop (0, 0) 3600 

TOTAL: 7200 
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                   Figure-27: evaluation metrics 

 
 

This forward struggle can also be seen on the confusion matrix. It demonstrates that while 

the majority of the elements are in the diagonal, more of the forward is mistaken for other 

classes while left and right are relatively way better classified. 

 

 

                         Figure-28: confusion matrix RGB 

 
 

 

4.2 Depth 

From the training, it can be seen that the general curve for the loss is good, therefore, a 

fitting learning rate was chosen. There are a couple validation bumps but overall it is decreasing 

meaning it did not overfit. Accuracy and validation acuracy are similar and start high and 

increase to be even higher. 
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Figure-29: the training- validation losses and training-validation accuracies for depth 

 

As can be seen from the results, the accuracy, precision, recall of the model is all 1.00’s 

meaning a nearly perfect model if not a perfect one. The confusion matrix shows that the model 

only confuses 8 stop frames out of 3600 for go, and only 2 go frames as stop. An overwhelming 

majority of the items are in the diagonal so depth part is achieved with flying colours. 

 

                     Figure-30: depth evaluation metrics 

 
 

                             Figure-31: depth confusion matrix 
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Overall, the average accuracy of both models is 0.96 owing it to  

 

0.92 + 1,00

2
= 0.96 

 

 

 

4.3 Other Trials 

 

Table 6. Some other trials 

Model 

type 

Data 

size 

Conv number 

& filters 

Learning 

rate 

Batch size Crop Dropout Regulariz

ation 

Accuracy 

MIOO* 128 2/32,64  0.0002 32    0.75 

MIOO 64 3/32,64,64 0.0002 128  ✔  0.78 

MIOO 32 4/24,32,64,128 0.0002 128  ✔  0.77 

MIOO 64 3/32,64,128 0.0003 64  ✔ ✔ 0.83 

MIMO* 128 2/32,64 0.0003 32    0.77 

MIMO 32 3/24,64,256 0.0001 64  ✔  0.78 

MIMO 64 3/32,64,128 0.0004 64 ✔ ✔  0.85 

RGB 64 4/24,32,64,256 0.0002 128 ✔ ✔ ✔ 0.82 

RGB 64 3/24,32,512 0.0002 128 ✔ ✔ ✔ 0.82 

RGB 32 3/24,32,64 0.0002 1024  ✔ ✔ 0.89 

RGB 64 4/24,32,64,128 0.0002 512 ✔ ✔ ✔ 0.90 

DEPTH 32 3/32,64,128 0.0001 1024  ✔ ✔ 0.97 

DEPTH 32 3/32,64,128 0.0001 1024 ✔ ✔ ✔ 0.92 

DEPTH 64 3/32,64,128 0.0004 512  ✔ ✔ 0.95 

DEPTH 64 3/32,64,128 0.0004 512 ✔ ✔ ✔ 0.98 

 

MIOO = multiple input one output 

MIMO = multiple input multiple output 
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For one output, a medium size with a higher than others gave a better result. Higher size 

performed badly since it was learning more and higher level features that would cause it to learn 

slower and perform worse in a basic classification. It might also be the lower batch size. For 

multiple output, better results were obtained with crop and more basic network. From then on 

with some exceptions, similar things were tested. Results in RGB also confirmed that less 

complex models performed better with crops, dropout, and regularization added. With depth, 

the crop helped with the outcome with 64, but negatively affected the 32 since it was already 

pretty small. 

It was seen as the experiments progressed that the more separate the two parts for the depth 

and the RGB was, the higher the accuracy tended to be. This is why it was fully separated in 

the end. This could be caused by the depth and RGB features not being compatible. 

 

 

4.4 Keras tuner trials 

 

Figure-32: randomsearch                   Figure-33. Best result from hyperband: 

       

 

      Figure-34: best result from bayesianoptimization 
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As can be seen from the results, the best performing tuner was Bayesian with 0.88 validation 

accuracy. This can be attributed to it searching based on previous results. RandomSearch was 

able to accomplish 0.854 while hyperband with more trials only obtained 0.851. Overall, while 

these numbers gave us some ideas in the beginning, maybe because they were suited to shorter 

trainings -since the tuners only trained for a small number of epochs to test faster- when we 

tried them for full length trainings, they did not fare better than something we wrote. 

 

 

4.5 Inference 

 

For the inference, some roads the car has never rode upon were built. One example is 

seen below. The final test for our models was the car driving on this road without going out of 

bounds, and stopping when obstacles were put randomly on different sections. 

 

                                       Figure-35: Inference path 1 

 
 

On these paths, which included some loops also, the car autonomously drove around. 

For the paths that did not include loops, when the car reached one end, its direction was reversed 

for it to parse the road in the opposite direction. Changing the direction was also done for the 

loop paths half of the time for a fair comparison of going into both directions. For the line 

violation rate, it was observed for a total of 50 loops, and it was seen that it stayed inside the 

bounds of the white lines 100 percent of the time. Afterwards, a couple road blocks were put 

on its course 50 times inside the bounds, and its rate to stop was investigated. In the end, it was 

found as 98% since it missed one of it that was probably placed too close to the outer bounds 

when the car was going in the opposite side of the line. 
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5. Optimization 

5.1 Mobilenet 

Pretrained model MobileNet was used in an attempt to obtain a better model. The results 

of our trials can be seen in the table below: 

 

It was seen that the model performed better with smaller data size from the initial tests. 

Then it was observed that less unfreezing resulted in better results. Which caused the later trials 

to be done with all layers frozen, and only working on the output feature map of the pretrained 

model. Then it was seen that less dense layers resulted in better outcomes. Afterwards, it was 

seen that with everything else the same, 64 size performed better than 32. Finally, a higher batch 

size and a lower learning rate concluded our trials with way lower accuracy at 0.85 compared 

to our models. 

It was decided that wasting anymore time on Mobilenet or other pretrained models was 

not productive, but since keras tuner did not take individual effort, it was also tested on it to see 

if it was a case of choosing wrong hyperparameters by us. Since the best results were obtained 

without any unfrozen layers, the tuner was tested with differing number of dense units, and 

learning rates. Two best models out of all the tests can be seen below. 

                                 Figure-36: best result from mobilenet tuner 

 

Unfrozen 

layers 

Data size Dense layer 

& unit 

Learning 

rate 

Batch size Crop Regulariz

ation 

Accuracy 

4 128 3/100,50,10 0.0001 32   0.74 

4 64 3/100,50,10 0.0001 32   0.76 

2 64 3/100,50,10 0.0002 64   0.79 

0 64 2/100,10 0.0004 128   0.78 

0 32 1/200 0.0002 128   0.79 

0 32 1/100 0.0003 256  ✔ 0.80 

0 64 1/100 0.0003 128  ✔ 0.83 

0 64 1/100 0.0002 256 ✔ ✔ 0.85 
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It was not comparable to the values achieved by our models. With the best score being 

0.57, so research on pretrained models was promptly dropped. In our opinion, the pretrained 

model did not result in the same level as our model due to it being more complex than what our 

deep learning project needed. 

 

5.2 TFLite 

 

TFLite made our model work faster with FPS increasing from 9-10 band to 14-15 which 

corresponds to around a 50% increase. 

 

11. DISCUSSION:  

 

This project was based on the idea of developing a final product carried out by 

implementing latest software technologies to hardware. In this sense, an autonomous car which 

is trained by self-captured videos was developed. Overall progression of the project to satisfy 

the success criteria can be discussed in 2 parts: Hardware and Software 

 

 Hardware applications of the project started with the efforts to mount the modules to 

build the car, connecting Intel RealSense camera and to provide the connection between remote 

controller and the car itself. The goal was to be able to drive the car for at least 5 consecutive 

laps and make it ready to collect enough data which are two of the success criteria of the project. 

These criteria were met by successfully accomplishing methods 1-2-3 and 4.1 stated in Part-4. 

Mounting the modules and connecting electronic equipment needed less effort than the other 

methodologies as some of them were already ready. Project team designed and printed some 

3d models to protect the equipment, provide durability and place each equipment to correct 

spots. Connections of Jetson Nano and Arduino Uno has been done. Then, the Intel RealSense 

camera has been connected and been ready to gather data. To achieve the connection between 

the car and the remote controller,  nRF24L01s modules were preferred. As stated in the former 

parts, these modules caused so many problems due to their nonpersistent behavior. Problem has 

been solved only by stocking extra equipment but unfortunately it costed weeks to the project  

team. After the car was ready to be driven, modular roads which is one of the major originality 

of the project were constructed. The car was driven on randomly constructed paths and labelled 

RGB and depth frames were collected. Stated two success criteria were met by these methods. 

 

 Software applications include data pre-processing, building the neural network and 

optimization. The aims of these applications were reaching a classification accuracy of 95%, 

obtaining the desired confusion matrix, building a neural network that can process 25 frames 

per second, having the car going with 95% lane keeping rate and 98% obstacle avoidance rate 



                         Istanbul Medipol University           

                School of Engineering and Natural Sciences  
                                    Graduation Project 

34 

 

which are the other success criteria of the project. These criteria were met by the methods 4.2-

4.3 and 5 except 25 FPS processing rate. Gathered data was augmented and pre-processed by 

using various techniques. Flipping was used to increase the number of right and left labeled 

frames. After that; rescaling, gray scaling and cropping was applied to have much more 

meaningful data. When the data was ready to fit to the model, project team constructed various 

neural networks and decided on using two separate models, one for processing RGB frames 

and one for processing depth frames. These model were the converted to TFLite models to 

optimize their speed and make them light-weighted. Obtained accuracy from these models were 

0.92 and 1.00, respectively. These values gave an average accuracy of 0.96 and both models' 

confusion matrix were pretty successful. By these results, theoretical success criteria of 

software applications, at least 0.95 accuracy and confusion matrix with majority of instances in 

the diagonal, were met. These models were also enough to meet the criteria of at least 95% lane 

keeping rate and 98% obstacle avoidance rate. These were tested by practical evaluations which 

are letting the car performing its skills and counting the desired an undesired behaviors. 

However, one success criteria which is 25 FPS input processing was not met. Reason of this 

unmet criteria was regarding the powering of Jetson Nano. Jetson Nano computer has two 

powering modes: MAX(10W) and 5W. The desired FPS rate was only reachable by MAX 

powering mode. However, external batteries were not enough to boot up Jetson Nano on MAX 

powering mode with all the peripherals on. So, project team needed to switch to 5W powering 

mode to be able to use the computer and process the data in real-time. But the best reachable 

FPS rate with 5W powering was 15. 

 

 As a result, it can be seen that followed methodologies were pretty successful as the 

project team achieved almost every success criteria. Although so many problems were 

encountered, project team dealt with all of them and develop the desired final product. The 

project is successfully completed with great effort of the team members. 

 

12. CONCLUSION: 

 

Our project aimed to develop an autonomous car by using advanced artificial 

intelligence technologies and training it with self-collected data. The car uses the Intel 

Realsense camera for depth and color information as input to deep learning models to make 

autonomous decisions on the road. Modular roads were used for training and testing, with 

custom models created for this purpose. 

 

The project consisted of five work packages, consisting of literature review, designing 

and assembling the car, creating the dataset, developing deep learning models, and optimizing 

their speed and accuracy. The first four packages were completed successfully. Reviewing 15 

articles were enough for the first package. For the hardware section, we created a car that can 
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work with a remote controller and without it for the inference that can loop around the paths 

consecutively despite some hiccups along the way. Data collection part was finished swiftly by 

collecting around 50 thousand frames after creating the puzzle like structure of the road and 

preparing the proper hardware and software for it. Our dataset is more diverse than most other 

research mentioned here owing it to our modular roads. Deep learning part package was 

achieved by obtaining the expected accuracy, by having the most of the items in the diagonal 

of the confusion matrix, by working in real-time, by having an avoidance rate of more than 

98%, and line keeping rate of 100%. Optimization part was not accomplished completely since 

the FPS is not 25 as intended even with using TFLite, but the car can drive around without any 

problems. 

 

 Despite encountering hardware issues along the way, such as the remote connection 

module and Jetson Nano/Xavier indecision, the project was successfully finished on time due 

to the team's perseverance and better knowledge on the software sections. Thanks to our efforts, 

we now have a car in our hands that possesses the ability to autonomously make decisions 

regarding its movement, including the choice of whether to move or not and the timing of its 

movements. 

 

13. FUTURE STUDIES: 

 

It is planned to continue this project to make the car able to bypass the small obstacles 

which are not covering the road completely. By this functionality the car will not stop for 

every obstacle it sees and it makes the project much more relatable to real-world scenarios. 

Also, object detection can be added to the project to make the car behave differently to 

various obstacles. Making the car more cautious to pedestrian-like objects will be an 

important development to advance the project. 

It is also possible to try to improve the project or change some parts to make it more 

applicable to more diverse situations by trying the below: 

• Trying single-model multiple output model type 

• Trying TensorRT for even faster inference 

• Data collection on other types of roads with different characteristics 

 

14. ASSESSMENT OF ENGINEERING COURSES:  

 

Courses that helped or will help us during project is as follows: 

 

Introduction to CoE&EEE: Building the car required Arduino and electronics knowledge. 

Thanks to our past experience in this course we knew the methods to build a car and use Arduino 

Boards. In the course project we experienced these concepts which helped us to finish this 

graduation project in an effective way. 
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Intro to Machine Learning and Intro to Deep Learning: Since we went through advanced 

concepts of machine learning and deep learning algorithms in these two courses, it was easy to 

make progress in the artificial intelligence part of the project. We had high-level knowledge on 

artificial intelligence thanks to these courses. 

 

Intro to Computer Vision: In this project we dealt with visual data and its processing steps 

which are the concepts that are included in this course's syllabus. This course helped us to 

predict the possible challenges and the ways to handle them. 

 

Advanced Programming: In the project we used Python programming language for building 

neural networks and configuring the camera. This course which helped us to improve our 

Python skills eased our jobs critically.  
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16. PROJECT ACTIVITIES AND WORK PLAN 

For this part, we want to see how you distribute the work items into weeks and who in your team will perform these work items. A better plan 

should distribute work uniformly over the weeks and project team members. Also, make sure you finish some work items during the planning so 

that you assess if the project is going well or not. The tables after the one below targets this requirement.  

Table 1 The Work-Activity Plan for Project 1 

Work and Activity 
Project 1 

Responsible  
Group 
Member 

Timeline 
1. 
week 

2. 
week 

3. 
week 

4. 
week 

5. 
week 

6. 
week 

7. 
week 

8. 
week 

9. 
week 

10. 
week 

11. 
week 

12. 
week 

13. 
week 

14. 
week 

1. Literature Review Taha - Büşra               

2. Hardware Taha - Büşra               

 

Table 2 The Work-Activity Plan for Project 2 

Work and Activity 
Project 2 

Responsible  
Group 
Member 

Timeline 
1. 
week 

2. 
week 

3. 
week 

4. 
week 

5. 
week 

6. 
week 

7. 
week 

8. 
week 

9. 
week 

10. 
week 

11. 
week 

12. 
week 

13. 
week 

14. 
week 

1. Literature Review Taha - Büşra               

2. Hardware Taha - Büşra               

3. Dataset Preparation Taha - Büşra               

4. Deep Learning Taha - Büşra               

5. Optimization Taha - Büşra               
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15.1 LIST OF WORK PACKAGES 

 

Table 3 Detailed Definition of Work and Activity 

WP 
No 

Detailed Definition of Work and Activity 
 

1 Literature survey for having desired knowledge by seeing similar projects and publications 

2 Building the car completely.  

(Module connection, remote controller, camera connection, 3d printing for car design) 

3 Creating the roads, driving the car for gathering data, data preprocessing. 

4 Creating unique model, training and testing, inference. 

5 Trying existing models, fine tuning, increasing the car speed, trying TFLite, Keras-tuner. 

 

 

Table 4 Work package targets, their assessment, and the contribution of each 

work package to the overall project success. 

Work 
package 

Target Measurable outcome 
Contribution to 

overall 
success(%) 

1 
Examining various examples of previous works and 

having knowledge of various methods and processes. 
Reviewing 15 articles. 10 

2 
Building the car by having all desired functionalities 

available. 

Being able to drive the 

car manually by 

obtaining RGB frames 

and depth information 

by the camera. 

20 

3 
Designing the roads to drive the car on. Gathering the 

data and preprocessing it to fit it into neural network 

Obtaining the dataset 

consisting of RGB 

frames and their depth 

information which are 

labelled by remote 

controller commands. 

20 

4 
Building a neural network and completing training 

and testing. 

Having the driving 

itself without lane 

violation and obstacle 

crashes. 

35 

5 Optimization Faster inference 15 

   Total:100 
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Table 5 The work package distribution to project team members 

WORK PACKAGE DISTRIBUTION 

 

Project Member WP1 WP2 WP3 WP4 WP5 

Fatma Büşra Yaman 50 50 50 50 50 

Taha Yunus Hamamcıoğlu 50 50 50 50 50 

Total 100% 100% 100% 100% 100% 

 

 

 

17. BUDGET 

Table 6 Proposed Budget in TL 

 

ITEMS 

PEOPLE MACHINE-
INSTRUMENT 

MATERIALS SERVICE TRAVEL 

IMU FUND 0 13.800 800 0 0 

SPONSOR COMPANY 
FUND 

- 
- - - - 

TOTAL 0 13.800 800 0 0 

 

Table 7 Actual Budget in TL (what you spent indeed) 

 

ITEMS 

PEOPLE MACHINE-
INSTRUMENT* 

MATERIALS* SERVICE TRAVEL 

IMU FUND 0 14.070 1000 0 0 

SPONSOR COMPANY 
FUND 

- - - - - 

TOTAL 0 14.070 1000 0 0 

*Provide proforma invoice for machines and materials to be purchased. 
*Provide technical specifications for machines and services to be purchased. 
*Make a contract for services if necessary 
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18. CURRICULUM VITAE 
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