
 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

 2022-2023

PROJECT TITLE

Video-Trained Autonomous Car

PROJECT ADVISOR

Prof. Dr. Bahadır Kürşat Güntürk

TEAM MEMBERS

Fatma Büşra Yaman - 64190002

Taha Yunus Hamamcıoğlu - 64190006

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

Project Code

Project Title: Video-Trained Autonomous Car

Project Advisor: Prof. Dr. Bahadır Kürşat Güntürk

Project Team Members: Fatma Büşra Yaman, Taha Yunus Hamamcıoğlu

Sponsor Company (if any) :

BUDGET (TL) PROPOSED CONSENTED

IMU FUNDING 14.600 15.070

SPONSOR COMPANY FUNDING - -

TOTAL 14.600 15.070

PROJECT PLAN PROPOSED CONSENTED

PROJECT PLAN Duration in Weeks 28 Weeks 28 Weeks

STARTING DATE

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

Project Code

PROJECT ADVISOR DEPARTMENT CHAIR

Name: Bahadır Kürşat Güntürk

Name: Mehmet Kemal Özdemir

Contact Information:

E-mail : bkgunturk@medipol.edu.tr

Contact Information:

E-mail : mkozdemir@medipol.edu.tr

Signature: Signature:

TEAM MEMBER TEAM MEMBER

Name: Fatma Büşra Yaman

Name: Taha Yunus Hamamcıoğlu

Contact Information:

Tel : 5387694738

E-mail : fatma.yaman@std.medipol.edu.tr

Contact Information:

Tel : 5303401240

E-mail : taha.hamamcioglu@std.medipol.edu.tr

Signature:

Signature:

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

Project Title: Video-trained Autonomous Car

Project Advisor: Prof. Dr. Bahadır Kürşat Güntürk

Team Members: Fatma Büşra Yaman, Taha Yunus Hamamcıoğlu

Project Group Title:

PROJECT OVERVIEW/SUMMARY/ABSTRACT

The focus of this project is applying the latest software technologies to hardware by

building an autonomous car that will be trained using video data. The autonomous car is

capable of making decisions using deep learning models in tandem with the Intel Realsense

camera that is capable of extracting the depth information as well as colour information. The

car is trained and tested on modular roads that can be rearranged to create diversified paths. For

the training, unique models were created that separates us from the rest.

The project timeline includes 5 work packages. The project progress includes the

reports, presentations, and the literature survey. Hardware package includes the design and

culmination of the remote-controlled car using the electronic equipment and handling the

communication. Dataset preparation is the third package responsible for the creation of the

modular roads and the train and test datasets. Deep learning package is for the development

of our own dataset alongside the train, test, inference. Finally, the optimization is for

increasing the speed and accuracy of the models.

First three work packages were successfully completed by reviewing 15 articles,

having a car that can finish 5 consecutive laps on the modular roads, and having a dataset of

40 thousand frames in total respectively. For the fourth package the project aimed to achieve

a classification accuracy of 95 percent, a line keeping rate of at least 96%, real time

inference, and an avoidance rate of at least 98%. Also, the majority of the elements should be

on the diagonal part i.e. the true positive section of the confusion matrix. Last package was

accomplished by the fastening of inference and trying a pretrained model in tandem.

Some problems in the hardware section that we were not familiar with delayed the

project progression, however, by persevering and handling the other familiar sections

simultaneously, we were able to finish the project on time successfully.

Keywords: autonomous car, video trained car, deep learning, CNN, remote controlled car,

modular roads, dataset creation

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

1. OBJECTIVE OF THE PROJECT:

An autonomous car is a type of car that can navigate around all by itself using AI algorithms for

the purposes of decision making. To infer on the situation on the outside world, the received data from

the cameras and other types of data from the sensors are utilized. To create a reliable dataset, engineers

collect a wide array of videos that record various occurrences on the real world. Then they label each

frame and feed them into the training pipeline to obtain a model that tells the car how to behave in certain

situations. After the end-to-end training of the AI vehicle is completed and properly tested, it is ready to

drive autonomously on real roads without the help of a human driver. Our project takes these video

trained AI and autonomous navigation concepts and applies them to a remote controlled toy car with

self-created roads. Our objectives are as follows:

Our objectives are as follows:

1) Developing a finished autonomous car system that can drive around paths of our

modular roads.

2) Creating a dataset of that consists of many different paths by using our modular roads.

These roads are puzzle-like in design with interlocking parts and repeating sections so

that they can be substituted swiftly and create a complete path.

3) Achieving performance of at least 25 FPS, that corresponds to real-time, on the Jetson

Nano platform to make sure that the car can respond quickly to changing stimulus.

4) Ensuring that the car follows the road with utmost accuracy and reliability.

5) Developing the ability to avoid or bypass multiple moving toy cars and pedestrians. Therefore,

demonstrating the autonomous car's ability to react to changing road conditions instead of just

predictable road detection.

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

1

2. LITERATURE REVIEW:

2.1. Evaluating Deep Learning Algorithms for Steering an Autonomous Vehicle

 The project that this paper is written for has very similar objectives and methods with

our project. The aim of the developers was to build an autonomous car which can drives itself

in an indoor environment without crashing obstacles. The equipment used in this project is

Raspberry Pi Model B+, a microcontroller and a camera. Dataset was generated by developers

by driving the car manually by a remote controller. Dataset consisted of the frames captured by

the camera and corresponding commands sent by the remote controller. A virtual machine was

used for training which is Amazon EC2. Pretrained models were preferred which were

Xception, VGG16 and MobileNet. The neural network was not embedded to the car. They used

a different computer to locate the neural network. When the car captures a frame, it was sent to

this computer to be classified, then the output which was the steering angle is sent back to the

car. Two types of evaluation was performed in this project. In quantitative evaluation, accuracy

of the model was tested. Best accuracy was obtained by an Xception model which was 81,19%.

In qualitative evaluation, they recorded amount of collisions and see if the car can actualize the

outputs of the neural network and they reached an average crash avoidance rate of 78.57. [1]

2.2. Real-Time Self-Driving Car Navigation Using Deep Neural Network

 The paper is proposing a project that is aiming to build an autonomous car controlled

by a convolutional neural network that can predict the correct steering angles by the real-time

RGB frames that the car's camera captures. In the project, car was built by the using the

following hardware: Raspberry Pi 3 Model B , a camera and a RC car, Arduino Uno. Data

collection method was done by driving the car manually. While driving the car, RGB frames

from the camera were recorded with the steering angle commands sent by the developers at the

same time. When the dataset that consisting of RGB frames which were labeled by

corresponding steering angle command were generated, it was enlarged by data augmentation.

After that a convolutional neural network was built by using TensorFlow and Keras libraries of

Python programming language and it was trained by the dataset consisting of more than 35.000

instances. Neural network performed perfectly by giving an accuracy rate 89% on the validation

data. Next step was testing the car on an actual road. Despite the camera latency, car performed

perfectly on the road as well. [2]

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

2

2.3. End to End Learning based Self-Driving using JacintoNet

 This paper concentrates on a technique called end-to-end learning and uses this

technique to build an autonomous car in a virtual environment. The technique is deeply

explained in the paper and implemented by using a network called JacintoNet. In the project,

data was gathered by driving the car in the virtual environment for a very long time. Driving

was done in various conditions. Aim was to obtain the data which includes desired steering

angle and speed for the images that the car's camera captured while driving. At the end of the

data gathering process, more than 200.000 samples were used to train the network. The

performance was observed by comparing the path of the car that is followed during testing with

the ground-truth path. The network performed perfectly. Then, it was compared with one of the

most popular networks used to deal with image inputs. Their performance was very similar.

The project shows that networks that are not complex like the one that is used in this project is

doing a great job on end-to-end learning technique. [3]

2.4. Design and Implementation of Autonomous Car using Raspberry Pi

 Ways to build a self-driving car by combining most of the popular detection algorithms

were discussed and implemented in this paper. The car was built on top of a Raspberry Pi chip.

The main idea was building the car that can be driven by a remote controller and to be fully

controlled or to be assisted by latest autonomous technologies. A mobile application was

preferred to drive the car. Prevention of the car from crashing obstacles while driving was

provided by a ultrasonic sensor. Lane detection was done by combining and getting the best

features of two commonly used lane detection algorithm which are future based and model

based. Image processing was done by taking every detail into consideration to increase the

efficiency. For navigating the self-driving car, manual driving was performed in various

conditions. Prevention from obstacles and navigation parts allowed the car to be fully

autonomous. The algorithms were successfully implemented to the car and the target was

achieved. A neural network was not used in this project but very wise approaches on processing

of image inputs that also can be used in our project broadened our horizons. [4]

2.5. End to End Learning for Self-Driving Cars

 This paper was distinguished by its way of implementing end-to-end learning method

to real cars. Purpose of this project was building a convolutional neural network that can predict

the correct steering angle directly from the visual inputs obtained by the camera located to the

front of a car. With the followed method, intermediate steps like lane following, object detection

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

3

were skipped and the learning was only done by the raw image inputs. To be able to gather the

training data and match the captured images with correct steering angle inputs, car was driven

by a human driver on different roads in different cities. After the data was gathered, the neural

network was built which is consisting of 9 layers. Human driver's steering angles were

considered as ground truth values and the aim was minimizing the mean squared error between

neural network's steering predictions and ground truth values. Evaluation of this network was

done in a simulation before taking the car to real world. In the simulation, network was tested

by the recorded videos of real world scenarios. Thanks to simulation, developers had the chance

to find out what will happen if the neural network was driving the car. When it was decided that

the neural network's performance was pretty satisfying. The neural network was embedded to

a real car, with the help of advanced equipment that is used in this project. The car drove itself

perfectly on the roads of US. [5]

2.6. Comparison of Machine Learning Algorithm’s on Self-Driving Car Navigation using

Nvidia Jetson Nano

 Comparison of three machine learning algorithms on an autonomous car was aimed in

this paper. These algorithms were SVM, ANN-ML and CNN-LSTM. To compare their

performance an autonomous car was built with the equipment of a Jetson Nano, a

microcontroller and a camera. Data which were image inputs were gathered by driving the car

manually to train the models. A mini road was designed to test the car with stated algorithms.

Algorithms were tested for three different scenarios and in three different car speeds. Obstacles

were also included in two of the scenarios. At the end it was observed that CNN-LSTM

algorithm was giving the best result in all speeds of each scenarios. [6]

2.7. Real-Time Control Using Convolutional Neural Network for Self-Driving Cars

 This project was aiming to building an autonomous car by end-to end approach. Car

was built on top of a Jetson Nano processor. Data gathering was performed by manual driving.

Gathered data includes the RGB images and corresponding steering angles. MobileNet was

used in convolutional architecture. After training of the neural network, the model was tested

to see if it can predict the correct steering angles when different RGB images of roads were

given. Before testing the model by embedding it into the car, it was tested in a computer

environment. When it was seen that the accuracy was good enough, the car was tested on the

road. The obtained test accuracy on the road was approximately 85%. [7]

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

4

2.8. A Convolutional Neural Network Approach Towards Self-Driving Cars

 An autonomous vehicle was designed in this project. Purpose was having the car

predicting the desired steering angles directly from camera inputs. A convolutional neural

network was used for this goal. The network was trained on the dataset by NVDIA and Udacity.

These datasets were including road frames and correct steering angles. For processing the

dataset, advantages of Robotic Operating System were used. Car was built by using these main

components: Rasberry Pi 3B, a web camera, ultrasonic sensors. Ultrasonic sensors were used

to avoid obstacles. After the network was trained, it was tested on a dataset provided from

University of Cambridge on a simulator. Developers obtained an autonomy of 86%

approximately. [8]

2.9. Deep learning algorithm for autonomous driving using GoogLeNet

 The paper compares the best 3 CNN’s from competitions that are about feature

extraction to find the best model that works for autonomous driving. According to results, that

model turns out to be GoogLeNet. Based on this model, the researchers propose a deep learning

algorithm named as GoogLenet for Autonomous Driving (GLAD). [9]

2.10. Autonomous Car Driving Using Deep Learning

Most other research uses complex models which make it more expensive to achieve good

results. This paper goes in the opposite direction and uses simple models like vanilla UNet/FCN

which makes it less costly but still yields good results. Their model works on real cars after

getting trained using CARLA driving simulation. [10]

2.11. Autonomous car using CNN deep learning algorithm

 This article uses deep learning algorithms of CNN to that learns the suitable output for

driving inputs to obtain an autonomous navigation system. Dataset is created on an open

simulation system that is the teaching grounds to the AI. The model gives the steering

commands after receiving the centre camera inputs. [11]

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

5

2.12. DeepPicar: A Low-Cost Deep Neural Network-Based Autonomous Car

 DeepPicar is a small replica of the autonomous car DAVE-2 that uses deep CNNs that

take the input frames from the camera, feeds it to the model, and obtains the steering angles.

The replica car also uses the same architecture but it is a lower cost to train and test to car since

it is a toy car that can drive around simple small-size roads. They show that Raspberry Pi can

handle real time control of end-to-end deep learning models with its limited computing

capabilities. [12]

2.13. End-to-end Learning of Driving Models from Large-scale Video Datasets

 This paper aims to create a robust perception-action model. They teach the motion

model using large resources of video data and create an end-to-end deep learning model. Their

model incorporates FCN-LSTM architectures which is compatibly trained with the video

dataset they acquired. This results in a model that can predict which action to take in which

situation on real roads with real cars. [13]

2.14. Deep Learning Techniques for Obstacle Detection and Avoidance in Driverless Cars

 This article is written by the intent to add to the smart cities by turning the cars into IoT

devices that can drive autonomously. The experiments work with a small RC Raspberry Pi car.

They command the car from their phones during the training section to create the dataset like

our plan. Then they used a CNN architecture to obtain the final results that were around 89%.

[14]

2.15. Multi-task deep learning with optical flow features for self-driving cars

 The article offers to use optical flow to acquire better accuracy with autonomous cars.

“The flow predictor, as a self-supervised deep network, models the underlying scene structure

from consecutive frames and generates the optical flow. The controller, as a supervised multi-

task deep network, predicts both steer angle and speed.” They also predict and make use of

depth information. [15]

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

6

3. ORIGINALITY:

In this project, traditional ways were not followed. Originality of the project starts from

generating the dataset and applies to each step. Overall progress will be briefly explained here

to give a better idea of originality, all the methods will also be explained in detail in part-4.

To generate the original dataset, car was driven manually by a remote controller on the

roads that were be designed by the project team. While driving, frames that the car was facing

were recorded by the camera. Simultaneously, corresponding commands which were sent from

the remote controller were also recorded. These commands were the speed values of left motors

and right motors of the car which allows the car to both adjust speed and steering angle. Frames

were labeled by matching these speed values and corresponding frames. As a result, a dataset

was obtained which tells us which commands are needed to be followed in all possible scenarios

that the car may come across. Also, the depth information of each frame was included in this

dataset. Depth information of each frame were easily obtained because the camera that was

used in the project is Intel Real Sense Camera with Depth Vision. This camera gave us the depth

information of each image. This depth information was matched to the corresponding RGB

frames and were used to avoid our car from obstacles.

Our way of gathering data can rarely be seen in existing projects but depth information

implementation to this method forms a unique blend that was not used in any other projects

before. Usually, autonomous car projects are following very similar strategies. It is very

common to see an autonomous car that is following lanes and behaving in accordance. In this

project, the car was designed in such a way that it will be trained by its manual experiences.

Huge online datasets are being used to train the car but in this project the dataset is original.

Usually, a lidar sensor is used to avoid obstacles by depth information, but instead of using a

lidar, Intel Real Sense Camera was used which gave us the chance to obtain RGB frames and

depth information form the same source. This approach of the project team increased the

efficiency and enhanced the originality. Furthermore, unlike existing projects that are using

pretrained models, project team built their unique neural networks. These neural networks were

trained by using the all the mentioned information that forms the dataset. After the training was

completed, project team obtained the neural networks which were able to decide on the desired

steering angle and speed when an RGB frame and its depth information is given. And by using

this neural network, the car had the ability to drive itself safely in all possible scenarios.

Another originality of this project was the modular roads that were built for training and

testing purposes. These roads were designed like a giant puzzle. So that by combining different

pieces, project team were able to train and test the car on many different roads.

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

7

4. SCOPE OF THE PROJECT AND EXPERIMENTS/METHODS:

1) Wireless connection of the remote controller

This is required for the seamless control of the car on the paths during the data collection

section. The added nRF24L01 module allows for the wireless transmission of data between the

remote controller and the toy car, while the Arduino joystick shield provides the input for the

movements of the car.

To get this setup to work, a lot of effort had to be expanded since our nRF24L01s broke

down from the start. Different types of codes that tries to send basic numerals through the

communication channel all the way to different joystick communication codes for car control

were tested. In total more than 10 types of codes were tested and the result was not changing.

During this process, all types of different combinations for the electronic equipment was tried.

For example, the Arduino Leonardo’s were swapped with Arduino Uno, nRF24s were

interchanged between each other. The cables were tested to understand if there was a physical

contact issue. Capacitors were added from a breadboard to regulate the power flow. ESP32

modules were brought as a substitute.

In the end, none of the codes alongside with changed electronic trials resulted in a data flow.

This cemented in our minds that the fault was on the nRF24s themselves since all the codes

worked on other users. It was only possible to test this hypothesis when the new modules arrived

at school though, and since we had to solve this issue before progressing to other topics, a lot

of weeks were wasted in the first semester.

After the new nRF24s arrived, the problem was solved, and the remote controller Arduino

codes were tweaked for it to work with the car effectively. In the beginning, the Joystick values

were continuous from 0 to 680, however, when the car was ridden for testing, it was seen that

our remote controller and motors were not sensitive enough to register the differences in the

joystick inputs. This caused a change for the input scheme from the joystick to specific

numbers, and change the regression problem to classification.

2) Connecting Intel Realsense camera for the RGB and depth

Making the Intel Realsense camera work with our model and car is an important part of our

project since the depth sensory information is necessary for the originality of our project. The

camera works alongside the Jetson Nano, so we connected the camera using its connection cable

to the Jetson Nano and started to work on it. It was not just possible to install using commands

like pip install since Jetson Nano is based on an ARM64 processor unlike typical computers

that generally uses x86. This was also the reason a different version of Arduino had to be

installed. Firstly, Archiconda was to be downloaded since regular anaconda does not work

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

8

either. It was used to create a new environment. The steps in the following website by Lieu

Zheng Hong [16] were followed that combined and explained in more detail the main Github

pages for downloading and implementing the intelrealsense2 for python. However, after

following it to the end, at the testing part, some errors arose that were caused by the conflict

between the virtual environments. The process was restarted after going to base environment,

deleting the archiconda environments, and correcting the CMake versions. However, because

of the partitions there was a limited space, and when it filled all the way without the complete

installation, the device was formatted and its disk space partition increased. On this try, the

method worked, and we had in our hands a camera that records RGB as well as depth

information that is useable through python scripts.

However, when the project was close to the end, and the time for inference came, it was

seen that the camera working with python2 was not compatible with the other parts working in

python3. It was seen that most people had a hard time applying the intelrealsense2 to python3,

and it was not innately compatible. After exhausting trials and research though with the correct

commands and folders in the right places, the camera started to work with python3.

3) Mounting and connecting the modules

Assembling the car and making it useful in terms of deep learning purposes was a scope

component. The base for the car was already built when the project started from previous

projects, so it had motors and wheels and a plastic skeleton. On top of this, the Arduino Uno

and Uno shield, Intel Realsense camera, and Jetson Nano was mounted. For the protection and

mounting process of the Intel Realsense camera and the Jetson Nano, specially designed plastic

encasings were 3D printed. For communication between the remote controller and the car, the

nRF24 was used as mentioned. For the Arduino and Jetson, a direct connection was used.

Camera and Jetson were also connected using the camera’s connection cable.

 Two 7.4 V Lipo battery with 2 cores, 2200 mAh, and 35C was used for powering the

Jetson Nano and motors individually. Jetson Nano requires the voltage to not exceed 5 V, so a

DC convertor was used to limit the voltage given. The camera and Arduino Uno takes the power

necessary from the connection to Jetson Nano. When nRF24 was present, it took power from

this battery by its connection to the Arduino Uno. Other battery is directly connected to the

motor driver to power up the motors for the car to move.

4) Dataset Generation

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

9

4.1 Gathering data:

 After the car was built and desired functionalities obtained, project team worked on data

gathering. First step was building the modular roads. Puzzle-like playing mats were used to

provide the modularity. By covering one surface of the mats with black cardboard and taping

white lanes on top of them, 16 unit of playing mats were shaped in a way that they can form

various paths when combined. Some of the constructed paths for data gathering are given

below. These paths are only used to gather "forward", "right" and "left" labelled RGB frames.

No obstacle were used on these paths.

Forward label corresponds to the left and right motor speed values of 155, 155; respectively.

Right label corresponds to the left and right motor speed values of -100, 160; respectively.

Left label corresponds to the left and right motor speed values of 160, -100; respectively.

 Figure-1: Training path-1 Figure-2: Training path-2

 Figure-3: Training path-3 Figure-4: Training path-4

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

10

To gather the "stop" labelled depth data, various obstacles were put in front of the car

while the speed values of the motors were both 0. An image representing the way of gathering

this data is given below.

 Figure-5: Depth information gathering

An instance of each label is given below:

 Figure-6: Forward labeled - RGB Figure-7: Left labeled - RGB

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

11

 Figure-8: Right labeled - RGB Figure-9: Stop labeled - Depth

All the frames were saved into a couple fundamental folders while driving the car. The

image names and speeds were recorded into csv files for each folder. After deleting the faulty

frames, all of the frames and csv files were merged individually.

4.2 Data augmentation:

After the raw data was gathered, data augmentation was done by flipping "right" and "left"

labeled frames to increase the dataset even more and have a much more balanced one.

Augmentation is represented below.

 Figure-10: Left labeled (before flipping) Figure-11: Right labeled (after flipping)

4.3 Preprocessing:

After the raw data was gathered, preprocessing was done. First of all, each image was

resized to 64x64 from their original size 640x480. After rescaling, all images were converted

to gray scale including the depth images since its coloring is artificially done and initially it is

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

12

in grayscale. RGB frames were also converted since our roads are black and white, and colour

information does not add anything fruitful. Finally, the upper 14 pixel of images were cropped

to prevent misleading information make the car deciding easier. Each step of preprocessing is

given below.

 Figure-12: Raw image Figure-13: Rescaled image

 Figure-14: Gray scaled image Figure-15: Cropped image

To create the labels, image names were used to match the images and wheel speeds from the

csv file. Afterwards, each type of wheel speed was changed each one into a classification

number, for example (0,0) speed was changed into the label 0. While a single model was used,

the structure of the npy file was as follows:

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

13

Figure-16: Dataset Representation

0 RGB FRAMES DEPTH LABEL

1 [RGB image array] [Depth Array] Number from 0 to 4

...

However, when two model structure was getting worked on, raw dataset was split into two

different npy files one for RGB and one for depth:

 Figure-17: RGB Representation

0 RGB FRAMES LABEL

1 [RGB image array] Number from 0 to 3

...

 Figure-18: Depth Representation

0 DEPTH FRAMES LABEL

1 [Depth image array] 0 or 1

...

While creating these files, for RGB the (0,0) speed frames were excluded and the wheel

speeds were changed into 0-1-2 for forward, right and left. For the depth, if the speed was 0, it

was labeled as 0 i.e. stop, and otherwise, whether it was forward, right, or left, it was still labeled

as 1, so go.

For the testing dataset a similar approach was followed. Different paths were created so that

there is not a cross pollination between the train and test sets, and the results are not misleading.

A couple examples of test paths is given below.

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

14

Figure-19: Testing path -1 Figure-20: Testing path -2

After following the same process as the training preprocessing, in the end, two different npy

files were obtained with the same structure as the train dataset for the two models and one npy

file for the single models.

5) Building Neural Network

When the dataset with more than 50.000 frames was generated, next step of the project was

to build the best performing neural network(s). The priority of the project team was to use their

own unique model which was achieved at the end. Best performance was obtained by using 2

convolutional neural networks; one for classifying depth frames to decide on when to stop and

when to go, one for classifying RGB frames to decide on where to go. All the models were built

by using Keras library of Python programming language. The progression of the training was

observed from either the CMD or the python console and plots sections. During an exemplary

training as below, the epochs and the graphs would be simultaneously watched to see how the

training was going.

Figure-21: method of training

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

15

Depth model was trained by using only depth frames. Depth frames which were captured

when there was no obstacle in front of the car belonged to class-0 which stands for "go", depth

frames captured when there was an obstacle in front of the car belonged to class-1 which stands

for "stop". This network consists of a normalization layer followed by 3 convolutional layers

and 1 fully connected layer with 100 neurons. After each of these 4 main layers, a dropout layer

with the dropout rate of 0.3 was added and after second and third convolutional layers 2D max

pooling layers were added with pool size (2,2). Convolutional layers all have the kernel size of

(3,3) and their filter numbers are 24, 32 and 64 respectively. Representation of the model is

given below.

Figure-22: depth model photo

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

16

RGB model was trained by using only RGB frames which were captured when the car

was being driven. There are 3 classes that this convolutional network tries to predict correctly:

Class-0 which stands for "forward" with corresponding right and left motor speed values of

(155,155), Class-1 which stands for "right" with corresponding right and left motor speed

values of (-100,160), Class-2 which stands for "left" with corresponding right and left motor

speed values of (160,-100). This network consists of a normalization layer followed by 3

convolutional layers and 1 fully connected layer with 100 neurons. After each of these 4 main

layers, a dropout layer with the dropout rate of 0.3 was added and after first and second

convolutional layers 2D max pooling layers were added with pool size (2,2). Convolutional

layers all have the kernel size of (3,3) and their filter numbers are 32, 64 and 128 respectively.

Representation of the model is given below.

Figure-23: RGB model photo

Both of these models were then converted to TensorFlow Lite (TFLite) models to have

the light-weighted version of each model and to increase the input processing speed. TFLite is

a framework that converts a TensorFlow model to an optimized version of itself in terms of

speed and storage.

Logic behind this structure with 2 neural networks is as follows: When an RGB frame

and its depth information was captured by the camera. First the depth information was

processed by the first model explained above. If the depth information is classified as class-1

which means "stop", this means there is an obstacle encountered and both right and left motor

speed values are set to 0 and the car stops. If depth information is classified as class-0 which

means "go", corresponding RGB frame of this depth information become processed by the

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

17

second model explained above. If the RGB frame is classified as class-0, class-1 or class-2, the

car moves forward, turns right or turns left, respectively, by setting the corresponding motor

speed values of each class which are also mentioned above.

Before concluding on this 2 modeled structure. various approaches have been tried to

solve the classification task with optimal results. First approach was trying to make the

classification by using a single model. Project team worked on two variations of this approach.

One was feeding the model with multiple input, RGB and depth frame, and obtaining a single

output for prediction of all 4 classes. The other one was feeding the model with multiple input

and obtaining multiple output, similar logic to the one with 2 modeled structures, but a merged

variation of it. All these approaches performed poorly either in testing or inference. After these

models MobileNet model have been tried by adjusting the frozen layer number over and over

but desired outcomes have not been achieved even with this pre-trained model. As a result,

project teamed decided on using the 2 modeled structured and obtained the results meeting

success criteria. All performance rates of each tried model are given in part-10.

Another approach that was tried to improve the performance was using keras-tuner.

Keras tuner is a library of Keras that is responsible for creating different models by testing

different parameters randomly, and possibly leading to better model parameters without trying

each parameter by hand. For this section, both different keras tuner modes and parametrizing

different parts of the model were tested.

Three different keras tuner modes were tried: RandomSearch, Hyperband, and

BayesianOptimization.

The RandomSearch tuner randomly selects hyperparameter combinations from a user

defined search space. This is more useful than grid search that systematically chooses

hyperparameter combinations since somewhere in between the grids a better value can be

hidden. Therefore, grid search was eliminated, and the search started with randomsearch. [17]

The Hyperband tuner halves the models at each run step to efficiently allocate resources

during the search. It trains multiple models simultaneously with different hyperparameter

configurations, getting rid of poor performance models, and allocating more resources to better

models. This type is better if there is limited time and resources. [17]

The Bayesian Optimization tuner uses Bayesian algorithms to intelligently explore the

hyperparameter search space. It creates a probabilistic model of the objective function and uses

it to find the most promising hyperparameter configurations for evaluation. This method is

efficient since it builds up on previous information gathered. [17]

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

18

While testing with keras tuner, at different times different parameters were chosen to be

searched upon. In the beginning, a couple parameters like the number of filters in the

convolution layer and number of units in dense layers were chosen as the parameters. As the

time went on, more parameters were added to explore upon. These tuners could even decide on

adding how many convolution layers and max pooling layers, effectively building different

types of models at each pass. They could even choose the kernel size, regularization parameters

etc.

Neural neural networks have been tested in two ways using our test roads:

Quantitative Evaluation: In this method, theoretical performance has been evaluated. This is to

check if the neural network is giving the correct output value when the RGB frames and depth

information is given. This evaluation has been done by using matplotlib and scikit libraries for

the confusion matrix and the model evaluation metrics respectively.

Qualitative Evaluation: In this method, practical performance has been evaluated. Number lane

violations and obstacle crashes recorded by hand and percentage of car's ability to drive safe

has been be calculated.

5. PROJECT TARGETS AND SUCCESS CRITERIA:

Work package 1 – Literature review

Success can be measured by reviewing 15 different articles. We successfully completed

this section by investigating 15 articles.

Work package 2 – Hardware

For the successful completion of the hardware section, firstly, all the hardware modules

have to be chosen to be compatible and placed on the skeleton of the car. The modules should

be able to communicate in real time and work harmoniously for both the data collection section

and the inference section. In addition, we should be able to drive the car manually for at least 5

consecutive laps. All of this was accomplished in the end by writing the correct codes and doing

enough testing.

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

19

Work package 3 – Dataset Preparation

For this part, the collection of at least 20 thousand frames of RGB and depth images

individually by driving the car manually is required. The frames should be preprocessed to be

effective for training. We have done this by driving the car around the modular roads, recording

the images, and preprocessing and data augmenting by our codes. In the end, we have around

50 thousand frames, more than the double of the success criteria preprocessed and fed to the

model.

Work package 4 – Deep learning

Firstly, the classification accuracy of the deep learning model should be higher than 95%

for the model to work properly on our modular roads. Accuracy is described as the ratio between

the correctly labeled photos, the true positives and the true negatives (TP and TN) to the whole

of the dataset which also includes false negatives and false positives. In short, accuracy is

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

A higher accuracy is needed in our case so that the correctly labeled photos are more

abundant than the other ones which results in a better working model. In our case, the average

accuracy was up to the standard due to correct training.

Confusion matrix is a type of table that has the actual labels in the left and the predicted

ones on the top. This way the correctly labeled photos are in the diagonal, and it is possible to

see how the model gets confused between different labels. When the majority of the results is

in the diagonal, it is possible to say the model is efficient at correctly classifying images.

The line keeping rate measures how well the car is able to stay within the created road lines

while driving. A pretty high line keeping rate is important for the car to not go out of bounds

all the time which would create a non-safe environment and non-properly working output

product. That’s why the cut-off value for the average line keeping rate was agreed as 96%. This

will be calculated by conducting 50 runs on different paths, recording any line violations that

occur, and averaging the value.

 Our next target is about the efficiency of the car. Car has to work in real time while

operating deep learning algorithms on a Jetson Nano. The Jetson Nano's lower processing

power and lower number of GPU cores compared to a regular computer GPU will handicap the

complexity of the model. This will limit the model types that can be used in the car whether it

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

20

is a prewritten model or our own. It will be important to carefully consider the model's number

of parameters, number of layers etc. and simplify and make the process more efficient if the

processing gets alarmingly slow.

The avoidance rate of cars and pedestrians should be at the very least 98%. Since this

rate is a measure of how well the model is able to avoid obstacles i.e. other cars and pedestrians

while driving, a high avoidance rate is of importance to the safety of the vehicle, its passengers,

and the pedestrians.

Work package 5 – Optimization

The car has to work on 25 FPS as mentioned and if the deep learning part is not enough to

meet this criteria optimization part will come into play. For the optimization to be successful,

TFLite will be added to the end of the model pipeline which makes the model more lightweight

and the inference faster.

6. RISKS AND B PLANS:

Table 1. risks and b plans

Work Package # Risk B-Plan

WP 2 Electronic equipment broke

down.

We stocked extra equipment and

bought new ones when needed

WP 3 Insufficient dataset was

encountered

We diversified the roads and added it to

our dataset. Also, data augmentation

was used.

WP 4 Model not achieving the

expected performance

Our models achieved the expected

performance.

7. WORK TIME PLAN OF THE PROJECT:

Literature Review work-package was done at the beginnings of each semester and

through the end of the second semester, when it was time to work on deep learning models.

Hardware work-package took much more time than expected due to failures of electronic

equipment. This was the first expected risk of this project as it is mentioned in part-6. The

biggest problem was regarding the nRF24L01 modules which were used to provide to

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

21

communication between remote controller and the car. nRF24L01 modules kept burning and

causing inconsistencies and project team needed to stock new ones. Another problem occurred

was regarding the powering of Jetson Nano computer. External batteries were not enough to

power Jetson Nano to run a neural network while all the peripherals like Arduino Uno and Intel

RealSense Camera were on. So, the project team decided to switch to Jetson Xavier platform,

a more powerful platform and suitable to the powering way that was tried on Jetson Nano. So,

all the setups were done on Jetson Xavier one more time. However, after a while a failure

occurred on the ports of Jetson Xavier and it needed to be sent to warranty. As a result, project

teams had to switch back to Jetson Nano platform and solved the powering problem by

powering Arduino platform and Jetson Nano separately. This platform switching costed project

team 3-4 weeks. Because of these problems, hardware work-package which was started at the

4th week of semester-1 was completed at the 10th week of semester-2. Dataset preparation

work-package was done in 2 steps. First step took first 2 weeks of the semester-2 where project

team construct the modular roads which is one of the primary originalities of the project. Second

step which is data gathering by manually driving the car and preprocessing of the data was done

when the Hardware work-package was completed and it also took 2 weeks. Deep learning work-

package started at the 10th week of semester-2 and continued until the end of the project. This

work-package was mostly done in parallel with the optimization work-package which was done

in last 3 weeks of the project. This work time plan is shown in Table 1 and Table 2 at Part 16.

All team members shared the workload of each work package equally. Completion rate

and measure of completion of each work-package is given below.

WP-1 Literature Review:

Completion Rate: 100%

Measure of Completion: Reviewing 15 articles and having enough knowledge of the works and

approaches done before.

WP-2 Hardware:

Completion Rate: 100%

Measure of Completion: Being able to drive the car manually by obtaining RGB frames and

depth information by the camera for at least 5 consecutive laps.

WP-3 Dataset Preparation:

Completion Rate: 100%

Measure of Completion: Obtaining a dataset consisting of at least 20 thousand frames and

preprocessing it to make it ready to fit neural networks.

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

22

WP-4: Deep Learning:

Completion Rate: 100%

Measure of Completion: Making the car going on random roads and avoiding obstacles

autonomously using Convolutional Neural Networks by achieving the proposed accuracy, lane

keeping rate, avoidance rate and obtaining a confusion matrix with majority of the results in the

diagonal.

WP-5 Optimization:

Completion Rate: 90%

Measure of Completion: Trying pre-trained models, increasing the speed of the car and being

able to process 25 frames per second.

WP-5 is not 100% completed because the neural network is able to process 15 frames per

second while the success criteria is 25. Reasons of this unmet success criteria is discussed at

part-11.

8. DEMO PLAN:

The demo of our project will be using our physical car and self-generated roads. For the

demo, the teachers will be given the chance to create a path using our modular roads in

whichever way they desire. Next, the car will be tested on this road that it may or may not have

encountered beforehand. This increases the chances to demonstrate that the car is not trained

for a specific couple of roads and instead can work on any kind of path, proving its versatility

and adaptability. It is possible to test the car on two different roads in the given demo time to

increase the chances of unforeseen paths.

In addition to the testing of the car on the physical roads, there is also the possibility of

demonstrating the test results on the computer test dataset. It will show that the car works

sufficiently on all the paths that were created specifically for the test dataset. On top of that, it

will give a better chance to see values of the accuracy, confusion matrix, average line keeping

rate, and FPS.

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

23

9. FINANCIAL EVALUATION:

Predicted total cost of the project was 14.555 TRY. However, due to the need of new

NRF modules to replace the burnt ones and extra material to design the road, required total cost

increased to 15.070 TRY. Machine-Instrument and Material cost took 14.070 and 1000 TRY

of the total, respectively. No cost was needed for People, Service and Travel categories. Inner

distribution of Machine-Instrument and Material spending is given below.

Machine-Instrument (14.070 TRY) Materials to Design Road (1000 TRY)

Jetson Nano Development Kit: 5100 TRY Playing mats : 800 TRY

Intel RealSense Camera : 7500 TRY Cardboard & Tape: 200 TRY

Arduino Boards i : 450 TRY

Voltage Regulator & Battery i : 610 TRY

Remote Controller i : 110 TRY

Wireless Connection Modules: 300 TRY

Distribution of predicted and actual spendings, classified into 4 main categories, are also

represented in Table 6 and 7, respectively.

10. RESULTS:

1. Literature review:

The results of it can be seen in the second section of the report. It was helpful in our journey

while deciding on the path to take for our project.

2. Hardware:

The connection scheme of our car can be seen in the figure below that lets the car work

without any problems. When the dataset collection section is over, the remote connection

module was removed.

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

24

Figure-24: Connection scheme

The final look of our car can be seen in the photos below.

 Figure-25: final car photos

Jetson Nano

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

25

3. Dataset Preparation:

3.1 Train dataset

When the data gathering was completed the project team obtained a dataset as follows:

Table 2. number of frames from each class

Frame Label Count (RGB - Depth Pair)

Forward (155, 155) 15.775

Right (-100, 160) 5.691

Left (160, -100) 8.626

Stop (0, 0) 9.302

TOTAL: 39.394

When the data augmentation was done by flipping the right and left images, the final

dataset was obtained given in the following table:

Table 3. number of frames from each class after data augmentation

Frame Label Count (RGB - Depth Pair)

Forward (155, 155) 15.775

Right (-100, 160) 14.317

Left (160, -100) 14.317

Stop (0, 0) 9.302

TOTAL: 53.711

3.2 Test dataset

For the test set a similar process was followed. Initial frame numbers are given below:

 Table 4. test set raw data for RGB and depth

Frame Label Count (RGB)

Forward (155, 155) 3781

Right (-100, 160) 1192

Left (160, -100) 1462

TOTAL: 6435

 After data augmentation, the number of frames were equalized across the board for easier to

read testing results. Final dataset numbers can be seen below.

Frame Label Count (Depth)

Others 6435

Stop (0, 0) 3202

TOTAL: 9637

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

26

 Table 5. test set finals

Frame Label Count (RGB)

Forward (155, 155) 2400

Right (-100, 160) 2400

Left (160, -100) 2400

TOTAL: 7200

4. Deep Learning

Firstly, results for the best RGB and depth models will be discussed based on the training-

validation losses and training-validation accuracies, evaluation results, and confusion matrices.

4.1 RGB:

For the trainings, generally, we had the early stopping mechanism that stopped the training

whenever the val_loss did not decrease for a number of epochs. This prevented overfitting in

the model as well as not wasting our resources. The training curve for the final RGB can be

seen below. When the validation loss stopped decreasing and instead is having an upward curve

with a value of 0.3 when the training is stopped as can be seen. Training loss is decreasing

steadily and not plateauing meaning a good learning rate is chosen. Accuracy is increasing

steadily albeit slowly until higher than 0.95 while validation accuracy is increasing even slower

and stopping a little after 0.9, not reaching 0.95. Validation loss and accuracy is a little bumpy

probably stemming from inconsistent dataset since when the car was nearing the road limiters,

it had to be centered, hence right or left classifications on a straight road, and vice versa when

turning.

 Figure-26: the training- validation losses and training-validation accuracies

From the scikit summary below it can be seen that the testing accuracy is 0.92. The accuracy

did not change much from the training and test meaning the model did not overfit to the train

dataset and performs well with unseen data. Precision and recall are high for the right and left

classes, i.e. 1 and 2 respectively, but as it has struggles with the forward class, its values are

lower.

Frame Label Count (Depth)

Left (160, -100) 3600

Stop (0, 0) 3600

TOTAL: 7200

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

27

 Figure-27: evaluation metrics

This forward struggle can also be seen on the confusion matrix. It demonstrates that while

the majority of the elements are in the diagonal, more of the forward is mistaken for other

classes while left and right are relatively way better classified.

 Figure-28: confusion matrix RGB

4.2 Depth

From the training, it can be seen that the general curve for the loss is good, therefore, a

fitting learning rate was chosen. There are a couple validation bumps but overall it is decreasing

meaning it did not overfit. Accuracy and validation acuracy are similar and start high and

increase to be even higher.

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

28

Figure-29: the training- validation losses and training-validation accuracies for depth

As can be seen from the results, the accuracy, precision, recall of the model is all 1.00’s

meaning a nearly perfect model if not a perfect one. The confusion matrix shows that the model

only confuses 8 stop frames out of 3600 for go, and only 2 go frames as stop. An overwhelming

majority of the items are in the diagonal so depth part is achieved with flying colours.

 Figure-30: depth evaluation metrics

 Figure-31: depth confusion matrix

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

29

Overall, the average accuracy of both models is 0.96 owing it to

0.92 + 1,00

2
= 0.96

4.3 Other Trials

Table 6. Some other trials

Model

type

Data

size

Conv number

& filters

Learning

rate

Batch size Crop Dropout Regulariz

ation

Accuracy

MIOO* 128 2/32,64 0.0002 32 0.75

MIOO 64 3/32,64,64 0.0002 128 ✔ 0.78

MIOO 32 4/24,32,64,128 0.0002 128 ✔ 0.77

MIOO 64 3/32,64,128 0.0003 64 ✔ ✔ 0.83

MIMO* 128 2/32,64 0.0003 32 0.77

MIMO 32 3/24,64,256 0.0001 64 ✔ 0.78

MIMO 64 3/32,64,128 0.0004 64 ✔ ✔ 0.85

RGB 64 4/24,32,64,256 0.0002 128 ✔ ✔ ✔ 0.82

RGB 64 3/24,32,512 0.0002 128 ✔ ✔ ✔ 0.82

RGB 32 3/24,32,64 0.0002 1024 ✔ ✔ 0.89

RGB 64 4/24,32,64,128 0.0002 512 ✔ ✔ ✔ 0.90

DEPTH 32 3/32,64,128 0.0001 1024 ✔ ✔ 0.97

DEPTH 32 3/32,64,128 0.0001 1024 ✔ ✔ ✔ 0.92

DEPTH 64 3/32,64,128 0.0004 512 ✔ ✔ 0.95

DEPTH 64 3/32,64,128 0.0004 512 ✔ ✔ ✔ 0.98

MIOO = multiple input one output

MIMO = multiple input multiple output

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

30

For one output, a medium size with a higher than others gave a better result. Higher size

performed badly since it was learning more and higher level features that would cause it to learn

slower and perform worse in a basic classification. It might also be the lower batch size. For

multiple output, better results were obtained with crop and more basic network. From then on

with some exceptions, similar things were tested. Results in RGB also confirmed that less

complex models performed better with crops, dropout, and regularization added. With depth,

the crop helped with the outcome with 64, but negatively affected the 32 since it was already

pretty small.

It was seen as the experiments progressed that the more separate the two parts for the depth

and the RGB was, the higher the accuracy tended to be. This is why it was fully separated in

the end. This could be caused by the depth and RGB features not being compatible.

4.4 Keras tuner trials

Figure-32: randomsearch Figure-33. Best result from hyperband:

 Figure-34: best result from bayesianoptimization

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

31

As can be seen from the results, the best performing tuner was Bayesian with 0.88 validation

accuracy. This can be attributed to it searching based on previous results. RandomSearch was

able to accomplish 0.854 while hyperband with more trials only obtained 0.851. Overall, while

these numbers gave us some ideas in the beginning, maybe because they were suited to shorter

trainings -since the tuners only trained for a small number of epochs to test faster- when we

tried them for full length trainings, they did not fare better than something we wrote.

4.5 Inference

For the inference, some roads the car has never rode upon were built. One example is

seen below. The final test for our models was the car driving on this road without going out of

bounds, and stopping when obstacles were put randomly on different sections.

 Figure-35: Inference path 1

On these paths, which included some loops also, the car autonomously drove around.

For the paths that did not include loops, when the car reached one end, its direction was reversed

for it to parse the road in the opposite direction. Changing the direction was also done for the

loop paths half of the time for a fair comparison of going into both directions. For the line

violation rate, it was observed for a total of 50 loops, and it was seen that it stayed inside the

bounds of the white lines 100 percent of the time. Afterwards, a couple road blocks were put

on its course 50 times inside the bounds, and its rate to stop was investigated. In the end, it was

found as 98% since it missed one of it that was probably placed too close to the outer bounds

when the car was going in the opposite side of the line.

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

32

5. Optimization

5.1 Mobilenet

Pretrained model MobileNet was used in an attempt to obtain a better model. The results

of our trials can be seen in the table below:

It was seen that the model performed better with smaller data size from the initial tests.

Then it was observed that less unfreezing resulted in better results. Which caused the later trials

to be done with all layers frozen, and only working on the output feature map of the pretrained

model. Then it was seen that less dense layers resulted in better outcomes. Afterwards, it was

seen that with everything else the same, 64 size performed better than 32. Finally, a higher batch

size and a lower learning rate concluded our trials with way lower accuracy at 0.85 compared

to our models.

It was decided that wasting anymore time on Mobilenet or other pretrained models was

not productive, but since keras tuner did not take individual effort, it was also tested on it to see

if it was a case of choosing wrong hyperparameters by us. Since the best results were obtained

without any unfrozen layers, the tuner was tested with differing number of dense units, and

learning rates. Two best models out of all the tests can be seen below.

 Figure-36: best result from mobilenet tuner

Unfrozen

layers

Data size Dense layer

& unit

Learning

rate

Batch size Crop Regulariz

ation

Accuracy

4 128 3/100,50,10 0.0001 32 0.74

4 64 3/100,50,10 0.0001 32 0.76

2 64 3/100,50,10 0.0002 64 0.79

0 64 2/100,10 0.0004 128 0.78

0 32 1/200 0.0002 128 0.79

0 32 1/100 0.0003 256 ✔ 0.80

0 64 1/100 0.0003 128 ✔ 0.83

0 64 1/100 0.0002 256 ✔ ✔ 0.85

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

33

It was not comparable to the values achieved by our models. With the best score being

0.57, so research on pretrained models was promptly dropped. In our opinion, the pretrained

model did not result in the same level as our model due to it being more complex than what our

deep learning project needed.

5.2 TFLite

TFLite made our model work faster with FPS increasing from 9-10 band to 14-15 which

corresponds to around a 50% increase.

11. DISCUSSION:

This project was based on the idea of developing a final product carried out by

implementing latest software technologies to hardware. In this sense, an autonomous car which

is trained by self-captured videos was developed. Overall progression of the project to satisfy

the success criteria can be discussed in 2 parts: Hardware and Software

 Hardware applications of the project started with the efforts to mount the modules to

build the car, connecting Intel RealSense camera and to provide the connection between remote

controller and the car itself. The goal was to be able to drive the car for at least 5 consecutive

laps and make it ready to collect enough data which are two of the success criteria of the project.

These criteria were met by successfully accomplishing methods 1-2-3 and 4.1 stated in Part-4.

Mounting the modules and connecting electronic equipment needed less effort than the other

methodologies as some of them were already ready. Project team designed and printed some

3d models to protect the equipment, provide durability and place each equipment to correct

spots. Connections of Jetson Nano and Arduino Uno has been done. Then, the Intel RealSense

camera has been connected and been ready to gather data. To achieve the connection between

the car and the remote controller, nRF24L01s modules were preferred. As stated in the former

parts, these modules caused so many problems due to their nonpersistent behavior. Problem has

been solved only by stocking extra equipment but unfortunately it costed weeks to the project

team. After the car was ready to be driven, modular roads which is one of the major originality

of the project were constructed. The car was driven on randomly constructed paths and labelled

RGB and depth frames were collected. Stated two success criteria were met by these methods.

 Software applications include data pre-processing, building the neural network and

optimization. The aims of these applications were reaching a classification accuracy of 95%,

obtaining the desired confusion matrix, building a neural network that can process 25 frames

per second, having the car going with 95% lane keeping rate and 98% obstacle avoidance rate

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

34

which are the other success criteria of the project. These criteria were met by the methods 4.2-

4.3 and 5 except 25 FPS processing rate. Gathered data was augmented and pre-processed by

using various techniques. Flipping was used to increase the number of right and left labeled

frames. After that; rescaling, gray scaling and cropping was applied to have much more

meaningful data. When the data was ready to fit to the model, project team constructed various

neural networks and decided on using two separate models, one for processing RGB frames

and one for processing depth frames. These model were the converted to TFLite models to

optimize their speed and make them light-weighted. Obtained accuracy from these models were

0.92 and 1.00, respectively. These values gave an average accuracy of 0.96 and both models'

confusion matrix were pretty successful. By these results, theoretical success criteria of

software applications, at least 0.95 accuracy and confusion matrix with majority of instances in

the diagonal, were met. These models were also enough to meet the criteria of at least 95% lane

keeping rate and 98% obstacle avoidance rate. These were tested by practical evaluations which

are letting the car performing its skills and counting the desired an undesired behaviors.

However, one success criteria which is 25 FPS input processing was not met. Reason of this

unmet criteria was regarding the powering of Jetson Nano. Jetson Nano computer has two

powering modes: MAX(10W) and 5W. The desired FPS rate was only reachable by MAX

powering mode. However, external batteries were not enough to boot up Jetson Nano on MAX

powering mode with all the peripherals on. So, project team needed to switch to 5W powering

mode to be able to use the computer and process the data in real-time. But the best reachable

FPS rate with 5W powering was 15.

 As a result, it can be seen that followed methodologies were pretty successful as the

project team achieved almost every success criteria. Although so many problems were

encountered, project team dealt with all of them and develop the desired final product. The

project is successfully completed with great effort of the team members.

12. CONCLUSION:

Our project aimed to develop an autonomous car by using advanced artificial

intelligence technologies and training it with self-collected data. The car uses the Intel

Realsense camera for depth and color information as input to deep learning models to make

autonomous decisions on the road. Modular roads were used for training and testing, with

custom models created for this purpose.

The project consisted of five work packages, consisting of literature review, designing

and assembling the car, creating the dataset, developing deep learning models, and optimizing

their speed and accuracy. The first four packages were completed successfully. Reviewing 15

articles were enough for the first package. For the hardware section, we created a car that can

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

35

work with a remote controller and without it for the inference that can loop around the paths

consecutively despite some hiccups along the way. Data collection part was finished swiftly by

collecting around 50 thousand frames after creating the puzzle like structure of the road and

preparing the proper hardware and software for it. Our dataset is more diverse than most other

research mentioned here owing it to our modular roads. Deep learning part package was

achieved by obtaining the expected accuracy, by having the most of the items in the diagonal

of the confusion matrix, by working in real-time, by having an avoidance rate of more than

98%, and line keeping rate of 100%. Optimization part was not accomplished completely since

the FPS is not 25 as intended even with using TFLite, but the car can drive around without any

problems.

 Despite encountering hardware issues along the way, such as the remote connection

module and Jetson Nano/Xavier indecision, the project was successfully finished on time due

to the team's perseverance and better knowledge on the software sections. Thanks to our efforts,

we now have a car in our hands that possesses the ability to autonomously make decisions

regarding its movement, including the choice of whether to move or not and the timing of its

movements.

13. FUTURE STUDIES:

It is planned to continue this project to make the car able to bypass the small obstacles

which are not covering the road completely. By this functionality the car will not stop for

every obstacle it sees and it makes the project much more relatable to real-world scenarios.

Also, object detection can be added to the project to make the car behave differently to

various obstacles. Making the car more cautious to pedestrian-like objects will be an

important development to advance the project.

It is also possible to try to improve the project or change some parts to make it more

applicable to more diverse situations by trying the below:

• Trying single-model multiple output model type

• Trying TensorRT for even faster inference

• Data collection on other types of roads with different characteristics

14. ASSESSMENT OF ENGINEERING COURSES:

Courses that helped or will help us during project is as follows:

Introduction to CoE&EEE: Building the car required Arduino and electronics knowledge.

Thanks to our past experience in this course we knew the methods to build a car and use Arduino

Boards. In the course project we experienced these concepts which helped us to finish this

graduation project in an effective way.

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

36

Intro to Machine Learning and Intro to Deep Learning: Since we went through advanced

concepts of machine learning and deep learning algorithms in these two courses, it was easy to

make progress in the artificial intelligence part of the project. We had high-level knowledge on

artificial intelligence thanks to these courses.

Intro to Computer Vision: In this project we dealt with visual data and its processing steps

which are the concepts that are included in this course's syllabus. This course helped us to

predict the possible challenges and the ways to handle them.

Advanced Programming: In the project we used Python programming language for building

neural networks and configuring the camera. This course which helped us to improve our

Python skills eased our jobs critically.

15. REFERENCES:

[1] Magnusson, F. (2018). Evaluating Deep Learning Algorithms for Steering an Autonomous

Vehicle.

[2] Do, T. D., Duong, M. T., Dang, Q. V., & Le, M. H. 2018. “Real-time self-driving car

navigation using deep neural network”. In 2018 4th International Conference on Green

Technology and Sustainable Development (GTSD) (pp. 7-12). IEEE.

[3] Viswanath, P., Nagori, S., Mody, M., Mathew, M., & Swami, P. 2018. “End to end learning

based self-driving using JacintoNet”. In 2018 IEEE 8th International Conference on Consumer

Electronics-Berlin (ICCE-Berlin) (pp. 1-4). IEEE.

[4] Pannu, G. S., Ansari, M. D., & Gupta, P. 2015. “Design and implementation of autonomous

car using Raspberry Pi”. International Journal of Computer Applications, 113(9)

[5] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., & Zieba, K.

2016. “End to end learning for self-driving cars”. Retrieved January 5, 2023, from

https://arxiv.org/pdf/1604.07316.pdf

[6] Vijitkunsawat, W., & Chantngarm, P. 2020. “Comparison of machine learning algorithm’s

on self-driving car navigation using Nvidia Jetson Nano”. In 2020 17th International

Conference on Electrical Engineering/Electronics, Computer, Telecommunications and

Information Technology (ECTI-CON) (pp. 201-204). IEEE.

https://arxiv.org/pdf/1604.07316.pdf

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

37

[7] Dangskul, W., Phattaravatin, K., Rattanaporn, K., & Kidjaidure, Y. 2021. “Real-Time

Control Using Convolution Neural Network for Self-Driving Cars”. In 2021 7th International

Conference on Engineering, Applied Sciences and Technology (ICEAST) (pp. 125-128). IEEE.

[8] Agnihotri, A., Saraf, P., & Bapnad, K. R. 2019. “A convolutional neural network approach

towards self-driving cars”. In 2019 IEEE 16th India Council International Conference

(INDICON) (pp. 1-4). IEEE.

[9] Al-Qizwini, M., Barjasteh, I., Al-Qassab, H. 2017. “Deep learning algorithm for

autonomous driving using GoogLeNet”. Retrieved January 4, 2023, from

https://ieeexplore.ieee.org/abstract/document/7995703

[10] Darapaneni, N., R, P. R., Paduri, A. R. 2021. “Autonomous Car Driving Using Deep

Learning”. Retrieved January 5, 2023, from

https://ieeexplore.ieee.org/abstract/document/9478090

[11] Sonata, I., Heryadi, Y., Lukas, L., Wibowo, A. 2020. “Autonomous car using CNN deep

learning algorithm”. Retrieved January 5, 2023, from

https://iopscience.iop.org/article/10.1088/1742-6596/1869/1/012071/pdf

[12] Bechtel, M. G., Mcellhiney, E., Kim, M., Yun, H. 2019. “DeepPicar: A Low-Cost Deep

Neural Network-Based Autonomous Car”. Retrieved January 5, 2023, from

https://ieeexplore.ieee.org/abstract/document/8607229

[13] Xu, H., Gao, Y., Yu, F., Darrell, T. 2017. “End-to-end Learning of Driving Models from

Large-scale Video Datasets”. Retrieved January 6, 2023, from

https://arxiv.org/pdf/1612.01079v2.pdf

[14] Dong, D., Li, X., Sun, X. 2019. “Deep Learning Techniques for Obstacle Detection and

Avoidance in Driverless Cars”. Retrieved January 6, 2023, from

https://ieeexplore.ieee.org/abstract/document/9073155

[15] Hu, Y., Shum, H. P. H., Ho, E. S. L. 2021. “Multi-task deep learning with optical flow

features for self-driving cars”. Retrieved January 7, 2023, from

https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-its.2020.0439

https://ieeexplore.ieee.org/abstract/document/7995703
https://ieeexplore.ieee.org/abstract/document/9478090
https://iopscience.iop.org/article/10.1088/1742-6596/1869/1/012071/pdf
https://ieeexplore.ieee.org/abstract/document/8607229
https://arxiv.org/pdf/1612.01079v2.pdf
https://ieeexplore.ieee.org/abstract/document/9073155
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-its.2020.0439

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

38

[16] Hong, L. H. 2020. “How to install librealsense and pyrealsense2 on the Jetson NX”.

Retrieved January 3, 2023, from

https://lieuzhenghong.com/how_to_install_librealsense_on_the_jetson_nx/

[17] “Getting started with KerasTuner”. Retrieved January 3, 2023, from

https://keras.io/guides/keras_tuner/getting_started/

https://lieuzhenghong.com/how_to_install_librealsense_on_the_jetson_nx/
https://keras.io/guides/keras_tuner/getting_started/

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

39

16. PROJECT ACTIVITIES AND WORK PLAN

For this part, we want to see how you distribute the work items into weeks and who in your team will perform these work items. A better plan

should distribute work uniformly over the weeks and project team members. Also, make sure you finish some work items during the planning so

that you assess if the project is going well or not. The tables after the one below targets this requirement.

Table 1 The Work-Activity Plan for Project 1

Work and Activity
Project 1

Responsible
Group
Member

Timeline
1.
week

2.
week

3.
week

4.
week

5.
week

6.
week

7.
week

8.
week

9.
week

10.
week

11.
week

12.
week

13.
week

14.
week

1. Literature Review Taha - Büşra

2. Hardware Taha - Büşra

Table 2 The Work-Activity Plan for Project 2

Work and Activity
Project 2

Responsible
Group
Member

Timeline
1.
week

2.
week

3.
week

4.
week

5.
week

6.
week

7.
week

8.
week

9.
week

10.
week

11.
week

12.
week

13.
week

14.
week

1. Literature Review Taha - Büşra

2. Hardware Taha - Büşra

3. Dataset Preparation Taha - Büşra

4. Deep Learning Taha - Büşra

5. Optimization Taha - Büşra

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

40

15.1 LIST OF WORK PACKAGES

Table 3 Detailed Definition of Work and Activity

WP
No

Detailed Definition of Work and Activity

1 Literature survey for having desired knowledge by seeing similar projects and publications

2 Building the car completely.

(Module connection, remote controller, camera connection, 3d printing for car design)

3 Creating the roads, driving the car for gathering data, data preprocessing.

4 Creating unique model, training and testing, inference.

5 Trying existing models, fine tuning, increasing the car speed, trying TFLite, Keras-tuner.

Table 4 Work package targets, their assessment, and the contribution of each

work package to the overall project success.

Work
package

Target Measurable outcome
Contribution to

overall
success(%)

1
Examining various examples of previous works and

having knowledge of various methods and processes.
Reviewing 15 articles. 10

2
Building the car by having all desired functionalities

available.

Being able to drive the

car manually by

obtaining RGB frames

and depth information

by the camera.

20

3
Designing the roads to drive the car on. Gathering the

data and preprocessing it to fit it into neural network

Obtaining the dataset

consisting of RGB

frames and their depth

information which are

labelled by remote

controller commands.

20

4
Building a neural network and completing training

and testing.

Having the driving

itself without lane

violation and obstacle

crashes.

35

5 Optimization Faster inference 15

 Total:100

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

41

Table 5 The work package distribution to project team members

WORK PACKAGE DISTRIBUTION

Project Member WP1 WP2 WP3 WP4 WP5

Fatma Büşra Yaman 50 50 50 50 50

Taha Yunus Hamamcıoğlu 50 50 50 50 50

Total 100% 100% 100% 100% 100%

17. BUDGET

Table 6 Proposed Budget in TL

ITEMS

PEOPLE MACHINE-
INSTRUMENT

MATERIALS SERVICE TRAVEL

IMU FUND 0 13.800 800 0 0

SPONSOR COMPANY
FUND

-
- - - -

TOTAL 0 13.800 800 0 0

Table 7 Actual Budget in TL (what you spent indeed)

ITEMS

PEOPLE MACHINE-
INSTRUMENT*

MATERIALS* SERVICE TRAVEL

IMU FUND 0 14.070 1000 0 0

SPONSOR COMPANY
FUND

- - - - -

TOTAL 0 14.070 1000 0 0

*Provide proforma invoice for machines and materials to be purchased.
*Provide technical specifications for machines and services to be purchased.
*Make a contract for services if necessary

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

42

18. CURRICULUM VITAE

 Istanbul Medipol University

 School of Engineering and Natural Sciences
 Graduation Project

43

