
Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

2022-2023

PROJECT TITLE

RISC-V Processor

PROJECT ADVISOR

Prof. Selim Akyokuş

Prof. Mustafa Aktan

TEAMMEMBERS

Amer Alhamvi

İbrahim Yuşa Çetin

1

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

BUDGET (TL) PROPOSED CONSENTED

IMU FUNDING 8500 8500

SPONSOR COMPANY FUNDING 0 0

TOTAL 8500 8500

PROJECT PLAN PROPOSED CONSENTED

PROJECT PLAN Duration in Weeks 28 Weeks 28 Weeks

STARTING DATE 01.11.2022 01.11.2022

Project Code: RISCV_Processor

PROJECT ADVISOR PROJECT CO-ADVISOR

Name: Prof. Selim Akyokuş Name: Prof. Mustafa Aktan

Contact Information:

Tel : 216-681-5141

E-mail : sakyokus@medipol.edu.tr

Contact Information:

Tel :

E-mail : mustafa.aktan@medipol.edu.tr

Signature: Signature:

2

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

DEPARTMENT CHAIR

Name: Prof. Mehmet Kemal Özdemir

Contact Information:

Tel : 216-681-5626

E-mail : mkozdemir@medipol.edu.tr

Signature:

TEAMMEMBER TEAMMEMBER

Name: Amer Alhamvi Name: İbrahim Yuşa Çetin

Contact Information:

Tel : +905312372775

E-mail : amer.alhamvi@std.medipol.edu.tr

Contact Information:

Tel : +905458607028

E-mail : ibrahim.cetin@std.medipol.edu.tr

Signature: Signature:

3

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

Project Title: RISC-V Processor

Project Advisors: Prof. Selim Akyokuş, Prof. Mustafa Aktan

Team Members: Amer Alhamvi, İbrahim Yuşa Çetin

Project Group Title: MediRISC

PROJECT OVERVIEW/SUMMARY/ABSTRACT

The objective of this project is to develop a System-on-a-Chip (SoC) that houses a
32-bit RISC-V CPU and supports the RISC-V standard extensions RV32IMC and an extra 11
additional custom non-standard instructions for specialized use cases in cryptography and
neural networking. The project comes at a time of pushing towards open-source hardware and
embodies the idea by building an SoC using an open-source CPU core that runs an
open-source ISA. The SoC also houses main memory and L1 cache elements as well as a
VGA module and basic SPI, PWM, and UART transmission peripherals.

Keywords: RISC-V, CPU, SoC, chip, FPGA, Verilog

4

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

1. OBJECTIVE OF THE PROJECT:

The aim of this project is to build an SoC (System on Chip) with a 32-bit extended
RISC-V core with custom instructions for specialized use cases for cryptography and neural
networking purposes on an FPGA.

The SoC supports RISC-V RV32IMCX instructions and has two caches for fast
memory access for data and instructions. Also, an AI accelerator module is included for use
for fast 2D convolution calculations.

This SoC is built with competing in the Teknofest chip design competition in mind.
Furthermore, the project reached the finals of this year’s competition and can be further
developed within the next 1 to 2 years with the aim of winning the competition.

Finally, to show off the work done on this project, a demonstration will be done
utilizing seven segment displays and the VGA port on the DE10 Lite board.

2. LITERATURE REVIEW:

● RISC-V

RISC-V is an open ISA built around a simple integer core instruction set with support
for 32-bit, 64-bit, and 128-bit computing. While it also supports for series of extension sets to
support additional functionalities such ass multiplication and division, floating-point
operations with different precision levels and more instructions (2016).

The widespread adoption of an open ISA like RISC-V would encourage a more
cooperative environment for hardware development by the means of open-source cores,
which would push down the cost of reuse of existing designs inducing a new market where
small companies can develop their own hardware (2014).

● Cache

The idea of small, fast memory level between the main memory and the CPU can be
found as back as in (1965) describing a 1-level cache system to exploit the temporal locality
of memory access patterns. Modern cache systems build upon the same core principles as in
(1965) and share the core elements such as the validity bit, storing only address tag instead of
the full memory address, and the idea of write-back cache but in a more advanced manner
(Patterson and Hennessy, 2013).

Modern cache systems utilize both spatial and temporal locality of the data in the
memory to achieve highest possible hit ratios. Also, in literature can be found the
investigation of cache size, cache word size, different replacement algorithms, write-through
and write-back, direct, associative, and set-associative caches, multi-level caching systems,
separating data cache from instruction cache, cache pipelining, and more(1982)(Stallings,
2015).

3. ORIGINALITY:

RISC-V is an instruction set architecture (ISA) planned with forward thinking in
mind, by supporting 32, 64, and 128-bit computing, and has few complete implementations

5

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

(2014). The rationale behind RISC-V can be considered under two categories: the
philosophies of open computing and reduced instruction sets. RISC-V is an open-source
instruction set meaning that it can be implemented and extended by anybody without any
legal drawbacks. It is also a RISC instruction set meaning that it has a significantly smaller
number of instructions compared to CISC ISAs such as x86. Upon the completion of the
project, it will be among the few implementations of a RISC-V SoC that are available on the
market today.

4. SCOPE OF THE PROJECT AND EXPERIMENTS/METHODS:

The project work packages are the following:

● Development of a primitive 8-bit CPU (for learning purposes only).

● Running the Ibex core, in simulation and on real hardware.

● Testing the Ibex core using simple bare-metal RISC-V programs.

● Implementation of 11 non-standard instructions to the Ibex core.

● Implementation of memory routing unit.

● Building an L1 cache for the main memory.

● Constructing a main memory for programs and data.

● Building peripheral modules.

● Creating some demonstration software using the seven segment display and
VGA ports on the DE10-Lite board.

4.1) 8-bit CPU

The first step in our project was to develop a simple, non-standard, 8-bit CPU and use
it to gain elementary experience with Intel’s FPGA development environment and the process
of developing and working with a digital CPU. This CPU was written with Verilog HDL from
scratch and loosely followed the architecture of the CPU shown in Chapter 13 of (LaMeres,
2017).

The instructions of this CPU are made of an opcode and an optional operand. Each
memory address contains either an opcode or an operand, where the operands correspond to
the opcode in the previous memory address. The CPU first decodes the opcode at the PC and
increments the PC. If the instruction does not require an operand and is not a branch
instruction, the PC points to the next opcode. Otherwise, if the instruction requires an operand
the PC points to the operand.

This was a short task and was completed in two weeks.

6

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

4.2) Running The Ibex Core on the FPGA

The Ibex Core (lowRISC, 2018) is an open-source configurable RISC-V CPU core
written in SystemVerilog. The Ibex Core planned to be used has a two-stage pipeline and
supports the RISC-V configuration of RV32IMC (Figure 4-1). This means that along with the
standard 32-bit instructions, the CPU Core will support multiplication instructions and the
16bit long compressed instruction sets.

This part includes the conversion of the Ibex Core’s RTL code from SystemVerilog to
Verilog using the sv2v library (Snow, 2019). This operation will ensure that the Quartus
synthesis tools can read the RTL code as per the Ibex Core documentation.

Also for this part an elementary on-chip memory was programmed to test the main
functionalities of the processor. For simulation testing, instructions to be tested were loaded
to this memory using the “$loadmemh” Verilog function. Since implementation on the real
hardware does not support this directive, instructions were written as shown in figure in
section 11.1 under a reset trigger in order to test instructions on real hardware.

At this stage, we tested simple programs by manually loading the binary machine
code into the memory.

Figure 4-1: The Ibex Core pipeline

4.3) Testing the Standard Ibex Core

To test the hardware, basic RISC-V architecture programs were written in RISC-V
assembly. The GNU RISC-V toolchain was used to compile this software. The programs
were firstly run on the simulation using the Icarus Verilog software and the results are
analyzed using the GTK Wave program. If simulation results were successful, the programs
were tested on real hardware. Shell scripts were created to compile the source code and then
extract the machine instructions from it using the objcopy command from the GNU RISC-V
toolchain. The scripts output a file that contains the instruction code that can be run on a
bare-metal RISC-V processor. Several small programs have been tested this way and yielded
successful results.

7

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

The GTK Wave program is used to view simulation results. It allows us to see every
input, output, and internal signal as they change with respect to time. To confirm the
successful execution of instructions, contents of the register that was the destination of an
instruction is checked. If it matches the theoretically correct result that the instruction was
expected to produce, it means that the instruction could be executed successfully by the
hardware.

To confirm successful execution on the DE10-Lite board, the contents of certain
registers were tied up to the seven segment displays. Since registers store 32 bits words, and
there are only 6 seven segment displays on the DE10-Lite board, only 24 bits of a single
register can be displayed at once. Therefore, unlike in the simulation where any number of
instructions can be tested in a single program, in the real hardware only the last instruction’s
output can be viewed. For the standard instructions that should be working out of the box
with Ibex, testing each instruction individually would be unnecessarily time consuming, so
two methods were chosen to test multiple instructions in a single program in this
environment. In both of them, an arbitrary register’s least significant 24 were tied to the seven
segment displays. This register would be used as the destination register of the instruction
that was being tested. The first method is to slow down clock speed significantly so that the
output can be recorded by hand and compared to the simulation results. The second method is
to use the output of each instruction as an input of the next instruction so that the only way
for the destination register to have the correct value after execution is completed is if every
instruction used in the program was executed correctly. Both methods were used throughout
the development of the project for testing.

In later stages of the project, the testing method was improved in multiple ways to test
other parts of the project. Loading the program to the BRAM based main memory was done
by initialization files or through the In-System Memory Content Editor tool in Intel Quartus
Prime. The first method allows the program to be uploaded to the FPGA along with the rest
of the system while the later method allows for loading programs online and efficiently.

These methods require the code compilation process to generate an Intel hex format
file, which is done with a python script incorporated within the shell script. The script also
now compiles C code, which is used for preparing the demos.

4.4) Non-Standard Instructions

The RISC-V based CPU supports all base RISC-V instructions, and additionally 11
custom non-standard instructions. 6 of these instructions are related to the field of
cryptography, and the other 5 are for performing 2D convolution in a quick, parallel manner.
The details of these instructions are given in figures 4-2 and 4-3 below. These bit schemes
were provided by the Teknofest Chip Design Competition Commision.

8

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

Figure 4-2: Cryptography related custom instructions

Figure 4-3: Custom instructions for 2D convolution

The functions of these instructions are described in table 4-1 below. In all of these
instructions, the result is saved to rd (destination register).

Instruction Name Function
hmdst Calculates the Hamming distance between rs1 and rs2.

pkg Combines the least significant half of rs2 and rs1 such that the least
significant half of rs2 is the most significant half of the result.

rvrs Reverses the byte order of rs1.
sladd Left shifts rs1 by one bit and adds it to rs2.

cntz Counts the number of trailing zeros (i.e. the number of zeros until the
first 1 is encountered starting from the least significant bit) at rs1.

cntp Counts the number of 1’s in rs1.
conv.ld.w Loads rs1 and rs2 as the filter values for the convolution.
conv.clr.w Clears any existing filter values for the convolution.
conv.ld.x Loads rs1 and rs2 as the operand values for the convolution.
conv.clr.x Clears any existing operand values for the convolution.
conv.run Runs the convolution with the configured filter and operand values.

Table 4-1: Instruction functionality description table

4.4.1) Cryptography instructions

9

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

These instructions are executed inside the ALU. The reason it was decided to
implement them inside the ALU was because the Ibex Core detects the 4 standard types of
instructions and routes the necessary signals for their execution to the correct places and
subsequently writes the results to the destination register specified in these instructions. All
custom instructions were designed to comply with the standard RISCV instruction types.

Among the custom cryptography instructions hmdst, pkg, and sladd fall into the
R-Type instruction category, whereas rvrs, cntz, and cntp fall into the I-Type category. Since
these instructions are not in the standard ISA, the Ibex Core treats them as illegal by default. It
uses the opcode (bits 31:27), the immediate value (bits 26:20), and the funct3 parameter (bits
14:12) to identify these instructions. Since the cryptography instructions have the same
opcode as standard ALU operations, it wasn’t necessary to make any changes to opcode based
identification. However, R and I-Type instructions were being marked illegal based on their
immediate and funct3 parameters.

There were case statements inside the Ibex decoder to check the funct3 parameter of
I-Type instructions and there were already cases for 0b101 which represents rvrs and 0b001
which represents cntz and cntp. For the group of hypothetical instructions whose funct3 value
is 0b001 -which includes the cntz and cntp-, the marking-as-illegal operation was being
performed based on the constant immediate values at bits 26:20. The constant immediate
values at this range for cntz and cntp are 0b0000001 and 0b0000010 respectively, so new
cases were added to the case statement checking the immediate values for these two
instructions and in order to make sure that the CPU treated them as legal instructions, the
illegal_insn signal was set to zero.

The other I-Type instruction which is rvrs has a different funct3 value than cntz and
cntp so its legalization was done under a different section of the code. Here, the Ibex Core
first checked the section of the immediate value at bits 31:27 and then checked some other
parameters under certain cases to determine the instruction’s legality. The value of 0b01101
present in this parameter of rvrs fell under the latter group. To legalize this instruction, an if
statement was added to the case for the 31:27 bits value for 0b01101 and the illegal_insn
signal was set to zero if the remaining parts of the immediate parameter (bits 26:20) matched
the value required for rvrs.

To legalize the R-Type instructions hmdst, pkg, and sladd, in the general case
statement that segregated instructions based on their opcodes under the case for 0x33 which is
the opcode for all three of these instructions under the additional case statement which
checked for bits 31:25 and 14:12, the options 0b0000101001 (for hmdst), 0b0000100100 (for
pkg), and 0b0010000010 (for sladd) were removed. multdiv_operator_o and
multdiv_signed_mode_o signals were also determined under this case statement. Even if an
instruction was not explicitly marked as illegal inside one of the cases, any instuction that was
not mentioned anywhere got illegal_insn assigned to one under the default case. Instead of
removing the default case, additional cases were added for hmdst, pkg, and sladd. Under these
cases multdiv_operator_o and multdiv_signed_mode_o were assigned to zero as these
instructions are not to be executed inside the multiplication-division unit. Under the last
mentioned case statement, the illegal_insn assignment was being done based on certain
conditions that were exactly the same for all the instructions that fell under the same
upper-case, so the conditions were copied from them.

10

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

Lastly, the signal that was passed through the alu_operator_o port had to be given
arbitrary but consistent codes for each of the custom instructions to be implemented inside the
ALU because the ALU differentiated the operation to be performed based on this information.
This assignment had to be done under a different case statement that checked the opcode_alu
signal, for the case 0x33 for R-Type instructions and 0x13 for I-Type instructions. These
arbitrary operator values were decided as shown in the table below.

Instruction Operator Value
rvrs 0x7A
cntp 0x7B
cntz 0x7C
sladd 0x7D
pkg 0x7E
hmdst 0x7F

Tabel 4-2: Operator values to identify the cryptography instructions inside the ALU

After the cryptography instructions were legalized and assigned operator values, the
Ibex core began sending the requested values from the requested registers as specified in these
instructions to the ALU. Likewise, it saves the results after a single cycle (standard for all
instructions that execute inside the ALU) to the corresponding destination register.

Buffer signals were created inside the ALU to hold the results of cryptography
operations, and the result leaving the ALU was determined based on a multiplexing logic that
used the operator value as a select signal.

To determine which operation is needed to be performed, the operator_i signal which
carried the operator value was checked with a case statement under a new always block. Cases
were created for all the values given in the operator values table above and the corresponding
operations were performed there.

The mathematical expression used to calculate hmdst is given in the figure below.

The Verilog statement used to calculate pkg is given in the figure below.

pkg_result = {operand_b_i[15:0], operand_a_i[15:0]};

The Verilog statements used to calculate sladd are given in the figure below.

sladd_result = operand_a_i<<1;

sladd_result = sladd_result + operand_b_i;

The Verilog statement used to calculate rvrs is given in the figure below.

11

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

rvrs_result = {operand_a_i[7:0], operand_a_i[15:8],
operand_a_i[23:16], operand_a_i[31:24]};

The mathematical expression used to calculate cntp is given in the figure below.

For the cntz instruction, an if statement was created that covered each of the 33
potential cases. The cases can be categorized into 3 broad scenarios. The first scenario is when
the first bit of the operand is 1, in which case the result is zero. The second scenario is for
when there is at least one 1 inside the operand, but it is not the first bit. For this case there are
31 else-if clauses to detect where the first 1 occurs. The third scenario is for when there are no
1’s inside the operand and this scenario is handled in the else block at the end of this if
statement. In this case the result is 32.

4.4.2) Custom AI Accelerator Instructions

Among the instructions to be developed for the AI Accelerator (henceforth to be called
“accelerator”), 4 out of 5 of them are for loading values to the registers inside the accelerator
unit or clearing the values present in those registers, whereas the remaining one is for
triggering the execution of the convolution operation using these values. There are two
restrictions of the accelerator: both the data and filter matrices must have the same
dimensions, and they can only have up to 16 values. The accelerator was designed this way to
adhere to the requirements for the Teknofest competition.

The four instructions for loading or clearing data can be executed inside a single cycle
and all of them are R-Type instructions and they are conv.ld.w, conv.clr.w, conv.ld.x, and
conv.clr.x. To enable the transmission of data from the registers called inside the instructions
to the accelerator, firstly a case for the value 0x0B was added to the case statement inside the
decoder that checked the opcodes. Another case statement was created under this case to
check for the funct3 values because that’s the differentiating factor between these four
instructions. Since the cryptography instructions were compatible with ALU instructions, all
the necessary data transfers were being handled by the Ibex Core automatically, but this is not
the case with the accelerator instructions because they are to be executed in their custom built
dedicated modules. Because of this, all the signals that were necessary to execute these
instructions had to be carried manually using custom ports. A total of 7 signals were used to
achieve this. These signals and their descriptions are given in the table below.

Signal Description

ai_wfilter The values in the registers specified in the
instructions are to be saved as filter values.

ai_wdata The values in the registers specified in the
instructions are to be saved as data values.

12

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

ai_operand_a_valid The value obtained from the rs1 register is
valid.

ai_operand_b_valid The value obtained from the rs2 register is
valid.

ai_cfilter Clear all filter values.
ai_cdata Clear all data values.

ai_run Indicates that the convolution operation is
currently being performed.

Table 4-3: Signals that were created to relay the information given in convolution
instructions to the concerned places inside the CPU.

Since these are R-Type instructions, the Ibex Core reads the values at the registers
specified in the instructions, and these can be read from the accelerator module. Whether
these values are valid or not, and whether they are valid are determined using these custom
signals. The route that these signals and operands travel from the decoder to the accelerator is
illustrated in the figure below.

Figure 4-4: The route that signals that enable the communication between the AI Accelerator and
the CPU traverse

Inside the accelerator, two separate 32-bit wide 16-item-long arrays were created to
hold the data and filter values. Even though these arrays are word-wise single dimensional,
they will be treated like 2D matrices that save their values linearly. As long as values are
written to the data and filter arrays in the same order, it does not make a difference since all
overlapping parts will be multiplied with their corresponding parts. Two 4-bit counters were

13

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

created to count how many write operations to data and filter arrays have been made since the
last reset, taking into consideration that some write operations only write a single operand and
others write two operands, indicated by their most significant bit. Upon a clear instruction, the
counters are reset as well. If the number of values loaded to the data and filter registers are not
the same, the extra values in the more lengthy array are ignored, as the empty spots in both of
the arrays are assumed to be zero, these extra values will end up being multiplied with zeros.

When the conv.run instruction is executed, the active signal inside the accelerator is set
to 1 which triggers the commencement of the operation. The first step is the multiplication of
correspondent values in the data and filter arrays. In order to execute the convolution
operation in the minimum number of cycles possible, all multiplications are done in parallel
simultaneously. To achieve this, the Ibex multiplication-division unit (henceforth to be called
“multdiv unit”) was instantiated 16 times (16 being the highest supported array size) using the
generate Verilog directive. Two arrays were created to store the inputs to each of the multdiv
units, each of their items were combinationally assigned to the corresponding index in the data
and filter arrays if the mult_active signal was 1, and otherwise to zero. mult_active was set to
1 when the run_i input brought a value of 1 and got reset to 0 after 3 cycles which is the time
it takes for the Ibex multdiv unit to complete one multiplication. The items of these arrays
were inputted at each iteration of the multdiv generation loop at indices indicated by the
iteration order of the loop. The result of each multiplication was also saved to a 16-item-long
array of 32-bit items. This items of this array were given as inputs to a custom made AI Adder
module (henceforth to be called “adder”).

The adder module uses a structure similar to a binary tree to perform the addition
operations. The operations take 4 cycles in total. The reason all numbers were not added at the
same cycle altogether was because that would most likely result in a timing violation on our
FPGA. By pipelining the addition operations, in each cycle only pair-of-two’s of numbers are
added together. In the fourth cycle of the operation, a single result remains which is the
overall result of the convolution operation. This value is outputted to the accelerator which in
turn outputs it to the execution block of Ibex. Here, there is a port called result_ex_o which
contained the overall result of the execution block. Which result among the results produced
by various execution block units to pick as the general result is determined by checking the
multdiv_sel signal and the ai_result_valid and ai_run signals. The result can be one of the
multdiv unit result, ALU result, and AI accelerator result. After the correct result is outputted
from the execution block, Ibex normally proceeds to take care of the writeback to the
destination register specified in the instruction.

Since convolution takes multiple cycles, the normal operation of the CPU has to be
stalled during the duration of the operation. To achieve this, the stall_alu signal inside the
execution block was set to 1 upon receiving the ai_run command, and it was reset back to
when an ai_result_valid signal was received after that. Even though the unit being stalled was
not the ALU, it still yielded the desired outcome.

4.5) Memory Routing Unit

CPU requests are routed to the intended destination through the memory routing unit.
This unit receives CPU requests of instruction read and data read and write as inputs and
generate response signals to the CPU and deliver read data as outputs. The memory routing

14

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

unit serves these requests as it has connections to the main memory, data cache, instructions
cache, and the ten physical switches on the FPGA board.

In some write-only cases such as writing to the VGA memory, the unit is not
responsible for routing the data from CPU to VGA memory, but is responsible for generating
response signals to the CPU.

The cache modules are instantiated inside the memory routing unit and output hit
signals used by the unit to determine the source of the data (cached or main memory) and
also output cached data in the respective address to be read on cache hit. On the other hand,
the unit inputs write data and address to the caches for data coming from the main memory in
cases of a cache miss.

The memory routing unit is a finite state machine with 16 states detailed in figure 4-4.
These states are split into states regarding instruction read, data read, data write, switches
read, and operations not handled by the unit.

Figure 4-5: The states of the FSM inside of the request routing unit.

4.6) Building an L1 Cache for the Main Memory

Two caches were built for this project. A directly mapped cache for instruction
caching, and a set-associative cache for data caching.

For the data storage inside the cache Intel’s 1 port RAM IP is used and for every word
stored the cache stores data and tag address. Also, for every word stored, one valid bit is
stored in the registers in the FPGA. The compiler translates the IP module into M9K memory
blocks (BRAM) found on the chip.

15

https://app.diagrams.net/?page-id=v6SozT07Emq-H2CGFPbq&scale=auto#G1oP51ljjzkeNBYqNw8qsF4E9255d36mtz

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

Valid bits are stored in registers rather than in BRAM to enable reset functionality.
Upon pressing the reset button and on startup, all valid bits registers are set to logical 0. Thus,
when checking for data in the cache after a reset, all cache addresses show no data. The
alternative method was to store the valid bits in the BRAM along with the tag address, but
this method would require a reset procedure to set the valid bits to logical 0 one per cycle
before resuming operations.

Both caches are set up in a write-through configuration. Which means whenever a
write is conducted, the new data is written in the cache and memory at the same time, while
the CPU waits for the write to the memory to conclude before resuming operations.

The instructions L1 cache is direct mapped memory with capacity of 1KB or 256
32-bit words.

Since the processor only issues word aligned requests, The lower two bits of the
address (the offset bits) are always 00. The next 8 bits, bits 2 to 9 are the index bits which
correspond to which line in the catch the address is mapped to. Finally, the remaining bits of
the address are the tag bits.

For each data word in the cache, the tag bits and one validity bit are also stored. When
a read request comes to the cache, the index bits of the request address are used to point to the
validity bit and the tag bits corresponding to the data already in cache from the validity bits
table and tag bits table in the cache. The request is called a cache-hit if the validity bit in the
table is true and the tag bits in the table match the tag bits of the request address. Otherwise,
the request is a cache-miss and data is retrieved from the memory. When a write request
comes to the cache, the data, validity bit, and tag bits of the line are all updated according to
the request.

The data L1 cache is 2KB of 2-way set-associative memory. During read operations,
the cache operates similarly as if there were 2 separate direct-maps connected by
comparators. 2 validity bits and 2 tag bits sets are compared to the request address and if one
tag bits set matches with the request address, it is determined to be a cache-hit and the data
related to this tag bits set are passed to the processor.

Writing to a set-associative cache requires more steps, as first the controller needs to
decide in which set the data shall be saved, and what to overwrite. For this purpose a
replacement algorithm is used and this project uses the least recently used algorithm
replacement for this purpose. The algorithm works by having a vector where each bit
indicates which set was most recently accessed for every cache address.

For example, when writing to address (00000000_00001111_11011000_10110100)2
the cache checks the least accessed vector at index of the bits 2 to 9 of the address. In this
case (00101101)2, and determines at which set to save the new data.

16

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

Figure 4-6: Direct mapped cache (Left) and two-way set-associative cache (right).

4.7) Main Memory

For the main memory a structure of BRAM with delayed response was developed to
simulate an SDRAM. This structure was chosen after the team faced challenges accessing
SDRAM chips on the DE10-Lite FPGA board and having to work with multiple boards from
different vendors which use different software during the project.

Furthermore, this memory structure allows for loading new programs online without
needing to re-compile the design.

4.8) Peripherals

The switches, button, LEDs, and Seven Segment Displays on the DE10-Lite board
were mapped to addresses to allow access to them using software. In addition, a VGA
module, and basic transmission functionality for SPI, PWM, and UART protocols/interfaces
were implemented. All peripherals were addressed in the same way as the main memory was
addressed. All addressable ranges and their corresponding memory or peripheral is shown in
the table below.

Address Range Corresponding Unit
0x00000000 - 0x00002000 Main Memory
0x20000000 - 0x2000000C UART
0x20010000 - 0x20010010 SPI
0x20020000 - 0x2002002C PWM
0x20030000 - 0x20034B00 VGA
0x20040000 - 0x20040024 Switches
0x20050000 Button 1
0x20060000 - 0x20060024 LEDs
0x20070000 - 0x20070030 Seven Segment Displays

Table 4-4: Memory map

17

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

All memory and peripherals were instantiated inside a module named Memory and
Peripherals Manager (shortened to “MPM”), which in turn was instantiated inside the top
design module. The Ibex Core and the MPM communicated the address and data values in the
top module. Inside the MPM, only module instantiations were done and all modules were
given the requested address and data information in all requests, whether to perform an action
or not was determined in the individual units based on address information. Any potential
outputs from the peripherals are continuously outputted into the MPM, along with a valid
signal and in the case of a read operation from the MPM module, the address is used as a
select signal to pick among the results sent from the peripherals/memory.

It should be noted that the UART, SPI, and PWM peripherals were developed for the
purposes of the Teknofest competition and were not developed any further afterwards, as the
team members were not very enthusiastic about them.

4.8.1) UART

UART stands for Universal Asynchronous Receiver Transmitter and is used to send
data asynchronously and works as a converter device between serial and parallel interfaces. A
bare minimum UART system has ports called TX and RX for enabling transmission and
reception respectively on one side, and the same number of ports as the number of bits in the
words of data (and any start and/or end bits) being transmitted on the other side. An input
clock must also be provided, and if the data transfer is expected to happen both ways, a
read/write port should also be present.

The UART module has a programmable baud rate (i.e. clock) and supports only
transmission. Two registers are responsible for configuring the transfer: uart_ctrl and
uart_wdata. uart_ctrl holds the baud_div value used to calculate the baud rate at its most
significant half and the tx_en signal at the first bit that controls whether data should be
transmitted, and uart_wdata contains the data to be transferred. There are 32 8-bit wide
buffers that hold the data written to uart_wdata. Baud rate calculation based on the baud_div
value is done according to the expression given in the figure below.

Each data packet is 10 bits wide; 8 bits for data, one start bit, and one end bit. A
4-state finite state machine (shortened “FSM”) was implemented to manage the transmission.
State transitions are performed based on a signal called tindex that contains the current index
bit index in the data pack that is being transferred. The starting state is called the idle state
and the module checks if the buffers contain data at this state and initiates a transmission
sequence if there is data in the buffers. In the first transmission state tindex is 0xF and the
start bit is sent, and tindex is incremented by one, which then becomes 0 since it is 4 bits
wide. The next state occurs when tindex is between 0 and 7 (inclusively). At each baud rising
edge the bit at tindex is sent and tindex is incremented by one. The next state begins when

18

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

tindex is 8 and in this state the end bit is sent. Then tindex is set to 0xF to be ready for another
transmission.

4.8.2) SPI

SPI stands for Serial Peripheral Interface and performs serial and synchronous data
transception using four ports: SPI clock, MISO (master in slave out), MOSI (master out slave
in), and CS (chip select, also called slave select).

The SPI module has a programmable clock and only supports transmission. In order to
use the SPI module to transmit data, three registers inside the module need to be written to.
Parameters that are set based on the information in these registers are the SPI clock speed and
the number of bytes to be transmitted. These registers are called spi_ctrl, spi_wdata, and
spi_cmd. The least significant half of spi_ctrl is used to set the clock divider limit, spi_wdata
contains the data to be transmitted, and the least significant 9 bits of spi_cmd contains the
number of bytes to be transmitted. The number of bytes has to be a multiple of 4 (i.e. integer
multiple of 32 bits in length), and there are 8 buffers that can each hold 4 bytes of data.
Therefore, at most 32 bytes can be transmitted in one sequence.

The polarity and phase are always assumed to be zero, i.e. the clock is low when idle,
data is toggled on the falling edge of the SPI clock, and sampling is done on the rising edge.
Five internal signals were created to perform transmission using the parameters provided.
These are sck_counter, tindex, tactive, tbytes, and tbytes_counter. sck_counter is the signal
used to control the SPI clock. It’s incremented in each system clock rising edge until it
reaches the limit provided in the sck_div section of the spi_ctrl register, which is at bits 31:16.
The mathematical expression for the SPI clock is given in the figure below.

Any write operation to the spi_cmd register pulls the tactive signal from 0 to 1. On the
first SPI clock rising edge where tactive is 1, the CS signal which is active-high is buffered to
1 with a delay of one cycle. As long as the tactive signal is 1, the index of the bit sent to the
MOSI port is incremented on each falling edge of the SPI clock. The slave side is expected to
sample the data on the rising edge. At every 8 bits of transmission, the tbytes_counter signals
is incremented by one, and this signal is used to tell the module when to stop transmitting
based on the number of bytes to be transferred specified in the length section of the spi_cmd
register which is found at bits 8:0. After a transmission stops, a new write operation to the
spi_cmd register must be performed to initiate another transmission sequence.

4.8.3) PWM

Pulse Width Modulation (PWM) is a digital control signal that allows the controller to
control the strength of the signal by quickly switching between logic 1 and logic 0 signals.
The time of logic 1 signal in each period is called the duty cycle, and is expressed as

19

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

percentage. The optimal PWM generator would have short periods yet still allow for fine duty
cycles changes.

For this project, a PWM module was developed with two operating modes. A standard
mode where the duty cycle is set and does not change. The other mode is heartbeat mode
where the duty cycle changes from a minimum threshold to a maximum threshold every full
cycle by a constant factor.

4.8.4) VGA

VGA stands for Video Graphics Array and is a relatively simple standard for video
transmission. There are 5 mandatory signals in VGA, three of which denote red, green, and
blue values for the given pixel, and the remaining two are horizontal and vertical
synchronization signals that tell the slave when the scanning of a single row and all rows are
completed, respectively. A VGA slave (e.g. a monitor) iterates through every single pixel in
its display using an internal clock whose frequency is determined by the VGA standard and
varies based on the resolution of the display. The VGA module on the DE10-Lite FPGA only
supports 640×480 resolution, which needs to run on a clock speed of 25 MHz.

Two counter modules -one for scanning the current row (i.e. horizontally) and one for
counting the rows (i.e. vertically)- were created and instantiated inside the VGA module. An
additional clock divider was used to half the clock frequency of the FPGA, since the FPGA
clock runs at 50 MHz. The signal timing needs to match the timing diagram shown in the
figure below.

Figure 4-7: VGA timing diagram

The horizontal timing shown at the top is performed 525 times (once for each row) at
each frame. A frame ends when the vertical timer reaches 524. the horizontal synchronization
is active in the first 96 cycles of a horizontal scan, and the vertical synchronization signal is
active in the first two cycles of a vertical scan. In horizontal scanning, at cycles 96-143
(inclusively) all color signals must be zero. Likewise, in vertical scanning, at cycles 2-34
(inclusively) they must also be zero. Horizontal scanning continues after all addressable
pixels in a row have been addressed, until the 800th cycle. During this time all color signals
must also be zero. Similarly, vertical scanning continues until the 525th scan cycle and all
color signals must be zero after video scanning ends at the 515th cycle. Note that when
talking about vertical scanning, “cycle” refers to the time period between the start and end of
a horizontal scan, not the VGA clock cycle.

20

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

All pixel color values are stored in a block RAM -called the video memory-,
implemented using the same Intel IP used for main memory. Each word was set to 16 bits
even though color signals are 4 bits each, resulting in a total color depth of 12 bits, because
the IP only allowed word sizes at powers of two. The most significant 4 bits were ignored,
and the following three groups of 4 bits were used as red, green, and blue values in that order.
Due to storage limitations of the DE10-Lite board, only a resolution of 160×120 (keeping the
original aspect ratio) could be supported with this video memory at most. Each word in the
video memory corresponds to a 4×4 group of pixels. The counter values from the horizontal
and vertical counter modules are used to calculate the address of the pixel in the video
memory. More specifically, the row value is vertical counter minus 35, and the column value
is horizontal counter minus 144. Then the corresponding address inside the video memory is
calculated as 160 * (row >> 2) + (column >> 2).

The address input of the video memory is connected to the output of a multiplexer
system whose inputs are the address for any hypothetical write operation and the regular
VGA pixel scanning address explained in the previous paragraph. The select input for this
multiplexer system is the wen signal which is an input that indicates that the CPU requests a
write operation to the video memory. In this case, the pixel in that CPU clock cycle is skipped
(the monitor draws a black pixel) and the video memory is written to. Since the display is 60
Hz and the use cases in the scope of this project do not require a pixel perfect and smooth
display, this is not considered to be a problem, most of the time the human eye cannot detect a
couple of black pixels on a screen that refreshes at 60 Hz. However, if the software makes a
very high number of write operations continuously, it can lead to some visual artifacts on the
display. The video memory is fed with the system clock which is double the frequency of the
VGA clock to mitigate this issue to some extent.

4.8.5) DE10-Lite GPIO

The DE10-Lite has two buttons, ten switches, ten LEDs, and six seven segment
displays. All of these have been assigned addresses and they can be read from or written to by
programming, except for the top button which has been assigned to system reset.

The address map showing the switches is in table 4-4 above, and an explanation on
how the read requests are handled is shown in section 10.5.

4.9) Demo

Multiple small programs will be run on the FPGA in the demo. Memory initialization
files in .hex format will be prepared for the demo beforehand. These files will be used to
program the FPGA for the different demos.

The main idea of the demo programs is to prove that the SoC does indeed work as
intended and verify different features mentioned in this report.

5. PROJECT TARGETS AND SUCCESS CRITERIA:

21

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

5.1) 8-bit CPU

This work packet’s success is decided by testing whether the developed processor can
run a program that uses the limited number of implemented instructions and generate the
correct result. The program chosen for this test shown in Figure 5-1 includes array operations
that will be performed using indirect memory access, and a while loop which will be
performed using conditional jumps.

Figure 5-1: The C code that will be tested on the non-standard CPU.

The test was conducted on simulation using Icarus Verilog and on the DE10-Lite
FPGA board by displaying the result on the 7-segment displays (see section 4.3 for details on
how this is done).

5.2) Running the Ibex Core on the FPGA

The objective of this work packet is to convert the Ibex Core from SystemVerilog to
Verilog-2005, compile it, and program the Intel DE10-Lite board with it. The success criteria
for this work packet is not getting any error messages in Intel Quartus Prime Lite which is
used to compile the design and program the FPGA.

5.3) Testing the Ibex Core

The objective of this work packet is to test the standard RISC-V instructions on the
Ibex Core. To achieve this, software was written in assembly to perform the instructions and
display the results on the seven segment displays. If the theoretical result matched the value
observed on the seven segment displays, it was counted as a success. Not all of the 47
standard instructions were tested as it was deemed unnecessary. Since the core is open source
and well trusted in the community, about 10 of the instructions were tested and yielded
successful results, then the rest were assumed to be working as well.

5.4) Non-Standard Instructions

The successful execution of these instructions is the success criteria, and it was
measured by checking the destination register contents after the execution is complete. The
process is very similar to the workflow described in section 4.3. It should be noted that a
custom built version of the GNU RISCV toolchain was used after this point that supports the

22

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

custom instructions implemented in this project. This custom build was published by Tübitak
for the purposes of the Teknofest competition.

5.5) The Memory Routing Unit

Since the most critical objective of the memory routing unit is the correct integration
with the L1 caches, the unit was first tested and verified with the instruction and data caches
and then the tests were expanded to include reading from switches and generating response
signals for operations not handled by the unit.

The success criteria of this part is the correct handling of requests coming for the
processor data and instruction request outputs. The requests may be handled differently
depending on the request address, and it is essential that all types of requests are handled
appropriatelythe.

These tests were done on simulation first and then testing on hardware was conducted.

5.6) Building an L1 Cache for the Main Memory

The success criteria for this part is the ability for the L1 cache to interface with the
memory routing unit correctly with hit status and cached data. As such the caches were first
tested by running a series of write and read requests and verifying the algorithms such as the
replacing algorithm for the data cache and the reset functionality.

Then they were tested with the memory routing unit and finally with the CPU on both
simulation and hardware.

The nature of these tests is that they are pass/fail tests, where in the event of failure
the cause of this failure is identified and the logic is corrected. As such, it can be said that all
tests passed with a 100% success rate.

5.6) Main Memory

The BRAM based main memory was tested by reading and writing to it and testing
different delay periods.

5.8) Peripherals

The SPI, UART, and PWM peripherals were tested in simulation only. Since they
were only built for the Teknofest competition, there was no incentive for the team members to
work on them afterwards. This is why these modules were marked as optional in the previous
report. The success of these modules are determined by the waveforms in the simulation
matching the correct forms for the standard. For SPI, this standard was explained in the
Teknofest Chip Design Competition Specifications document.

5.8.1) UART

The success criteria is the successful transmission of an 8-bit data packet in the correct
baud rate configured by the programmer (see section 4.8.1).

23

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

5.8.2) SPI

The success criteria is the successful transmission of a 32-bit data packet in the correct
SPI clock configured by the programmer (see section 4.8.2).

5.8.3) PWM

The success criteria is the successful generation of the PWM signal in both standard
and heartbeat mode with thresholds and duty cycle correct as configured by the programmer

5.8.4) VGA

The first success criteria is the successful display of an image on a monitor. This is
any 160×120 image that is converted to the Intel memory initialization hex format. A Python
script using the Python Imaging Library was written to perform this conversion. The second
success criteria is the display of a pixel modified through write operations requested by the
CPU in the frame following the operations at the correct coordinates on the monitor. This can
be directly observed by the human eye.

5.8.5) DE10-Lite GPIO

The success criteria for the switches and the lower button (reminder: the upper button
is wired to system reset) is reading the correct values from these inputs using load
instructions directed at the addresses they are assigned. The success criteria for the LEDs and
GPIO is the correct display of a hexadecimal value that was written to their respective
addresses.

5.9) Demo

This work packet’s success is determined by the demo to be presented at the end of
this project. The demo will consist of multiple small programs and will be prepared in a way
such that a non-academic person can comprehend the working status of the FPGA. The demo
will be interactive and have display output over the VGA port or the seven segment displays
on the DE10-Lite board.

One of the programs to be presented at the demo is completed and tested and it’s a
program that continuously reads the input from the switches and calculates and displays the
hamming distance between the first and the second half of the ten switches on the seven
segment display using the custom hmdst instruction detailed in section 10.8.5.

6. RISKS AND B PLANS:

Work
Package
#

Risk B-Plan

WP2 GNU RISC-V toolchain
raising errors

Try to debug simple errors, otherwise
research different compilers for RISCV

24

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

WP 3 DE10 FPGA not having
enough
logic units

Ask the department for another FPGA which
has more logic units.

WP 6 Intel SDRAM controller IP
not working properly with the
FPGA

Use a 3rd party SDRAM controller.

WP 6 Can’t find working 3rd party
SDRAM

Simulate SDRAM with BRAM with added
delay.

WP 6 FPGA does not have enough
GPIO ports to support all
planned peripherals.

Implement only one or two of the peripherals.

WP 6 The demo can not be finished
on time.

Switch to a simpler demo. The project’s goal
is hardware development and demonstration
application has lower priority.

7. WORK TIME PLAN OF THE PROJECT:

The first step was the development of the 8-bit CPU because a fully functional
complete CPU is an incredibly complicated device that could be difficult to understand if
diven straight into. Thus it was reasoned that some preliminary experience with CPU
development would be helpful in understanding more complicated CPU structures later on.
Even though the Ibex core will be used as the base CPU, it will be extended for custom
instructions, so a thorough understanding of the inner workings of a CPU is required in order
to complete this project.

The next step was running the Ibex core, because before anything else could be done,
the base hardware was necessary to be functional, as it is the foundation for the entire SoC.

Once there is a working base CPU, it needs to be tested to make sure that it is actually
working correctly. This is why the third step is the “Testing the Ibex Core” work package.
Before moving on to the next steps, it was important that it was confirmed that the foundation
of the project is functional, which is explained in section 4.3.

After verifying the core, the development split into custom instructions followed by
peripherals and supporting memory elements.

While İbrahim Yuşa Çetin worked on cryptography instruction followed by the AI
accelerator and then the peripherals, Amer Alhamvi worked on the caches and the memory
routing unit.

During the second half of the project, the focus shifted to working towards Teknofest
competition. This included writing the detailed design report for the competition and

25

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

switching the FPGA being used from Intel Altera FPGA to a Xilinix FPGA. Finally, the
competition was held in-person in Istanbul and lasted for 5 days .

After the competition, the project was migrated back to the Intel DE10-Lite board, as
both members had one at their disposal as opposed to there being only one Xilinx FPGA. The
VGA module was developed in this period, and the GPIO peripherals were also mapped to
memory addresses for software access.

The last few weeks were spent on ironing out all the elements and preparing the final
demonstration.

8. DEMO PLAN:

The demo plan is detailed in section 4.9, 5.9, and 10.9, while the test shown in part
10.8.5 will be among the programs to be demeonstrates.

9. FINANCIAL EVALUATION:

The only expenditure of this project was the acquisition of the Nexys A7 FPGA to
participate in the teknofest competition. Otherwise, the school already had the DE10-Lite
FPGA boards that were used for this project.

10. RESULTS:

10.1) 8-bit CPU

We have completed the development and testing of a non-standard 8-bit CPU. We
tested it both on simulation using Icarus Verilog and on the DE10-Lite FPGA board.

Our processor can do more sophisticated instructions than the one in chapter 13 of
(LaMeres, 2017) we used as a reference. Our processor can use both registers as a destination
for addition and subtraction operations and also can address the main memory with indirect
addressing.

10.2) Running the Ibex Core on the FPGA

The Ibex Core was successfully compiled in Intel Quartus Prime Lite and the
DE10-Lite board was programmed without errors. Since the results of the next work packet
also indicate the success of this work packet, the results for this work packet are omitted from
the report.

10.3) Testing The Ibex Core

Although the project has its focus on hardware design, the most feasible way to verify
it is by creating software for it and checking whether it can run successfully. Hardware is a
lower level than software in terms of abstraction, and software is only meaningful in the
presence of hardware that can interpret it. Therefore, the correct execution of software
necessitates the correct execution of hardware, but not the other way around.

26

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

A build automation script was developed in POSIX shell scripting to compile the
software written in RISCV assembly language and convert it into a format recognized by
Icarus Verilog or Quartus Prime. One of the registers in the register file inside the CPU was
connected to the seven segment displays. Given in the figures below are the last program that
was tested finally conclude this testing, in its C-like pseudocode and the corresponding
assembly code, followed by the GTK Wave waveform showing the results, followed by the
result being shown on the DE10-Lite board on the seven segment displays. Note that the
values shown in the waveforms and on the seven segment displays are in hexadecimal
format.

Figure10-1: Sample assembly code (left) and C code (top-right) used for testing the Ibex
core, and the result when the program is run on the FPGA (bottom-right).

10.4) Non-Standard Instructions

The non standard instructions were tested in the same manner as the standard
instructions as shown in the subsection above. Only this time, a custom built version of the
GNU RISCV Toolchain had to be used that supported these instructions. As mentioned
earlier, this custom GCC suite was acquired from the GitHub page of Tübitak Tütel.

27

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

10.4.1) Cryptography Instructions

See figure 10-13 in the peripherals subsection (10.8.5) for a demonstration of the
hmdst instruction working.

10.4.2) Convolution Instructions

Figure 10-2 shows the testing code and the resulting waveform. Note that the .en
suffix at the end of load instructions denote that two load operations (one from each register
provided) are to be done. x18 is the display register.

Figure 10-2: A testing of convolution instructions

10.5) The Memory Routing Unit

Figure 10-3 shows how a read from a switch is handled by the memory routing unit. In
blue is the request signal input from the CPU and just below that in green is the first response
signal called request granted is sent as soon as the unit is not busy. This signal indicates to the
CPU that the unit has captured the request and the next request can be sent. In red is the
hexadecimal address of the request 0x2004004, which corresponds with the first switch from
the right on the board (since each switch is treated as a 4-bit word).

The next signal is the read data and it changes at the same time as the data valid signal.
The data valid signal is the second and last response signal to the CPU meaning the read data
is ready to be read by the CPU. In this case the switch was set to the upper position meaning
logical 1 and returns 1 to the CPU.

After that is the write data (data to be written) signal from the CPU but is irrelevant for
this read operation. Finally, the current state of the FSM inside the unit is shown. The request
is captured on the state idle 0x0 and processed on the state read_from_switches 0x4001.

28

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

Figure 10-3: Signals inside the memory routing unit during a read from switch operation.

The next figure, figure 10-4 shows how 2 consecutive cache hit read operations are
done. When the request granted signal is set to logic 1, the input address changes to the next
request’s address. 2 cycles later the response signal data valid is set to logic 1 to indicate that
the data is ready. Each read operation takes 3 cycles to complete.

Figure 10-4: Signals inside the memory routing unit during a read with cache hit.

Figure 10-5 shows a write to the VGA memory operation which is an example of an
operation not handled by the unit. In this case the unit is only responsible for generating the
response signals to the CPU and not actually do read or write operations. The write operations
are handled by the receiving unit which is directly connected to the CPU data ports and are
done when the correct address is requested.

The memory routing unit generates the request granted signal at the same cycle the
request is received and generates the data valid signal (which means the write operation
finished) on the second cycle.

Figure 10-5: Signals inside the memory routing unit during an operation that is not handled by
the unit.

10.6) Building an L1 Cache for the Main Memory

Figure 10-6 shows a cache test conducted with memory routing unit integration. This
is a test of accessing addresses with similar cache addresses but with different tag addresses.
The data output for both addresses comes from cache.

Figure 10-6: Data cache test was conducted successfully.

29

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

10.7) Main Memory

The main memory was tested for correct signal generation to simulate an SDRAM
controller. This is an example of the main memory in operation executing a writing operation.
The o_data_valid signal in writing operations means that the memory write operation is
finished and the memory is ready for next request.

Figure 10-7: A data write operation handled by the main memory.

10.8) Peripherals

10.8.1) UART

The program below produces the waveform given below it.

Figure 10-8: The testing of UART.

10.8.2) SPI

The program below produces the waveform given below it.

30

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

Figure 10-9: The testing of SPI.

10.8.3) PWM

Figure 10-10 shows PWM signal generated in standard mode with duty cycle of 44%
with period set to 16 clock cycles. The PWM output signal is gated and as such is shifted one
clock cycle and changes at clk_counter 2.

Figure 10-10: PWM signal generated in standard mode

Figure 10-11 shows PWM signals generated in heartbeat mode where the duty cycle
starts at 12% and goes to 83% in 20% steps. The period was set to 60 clock cycles.

Figure 10-11: PWM signal generated in standard mode

10.8.4) VGA

Given below is the photograph of a monitor that is connected to the DE10-Lite board
through the VGA port. The video memory in the VGA module was initialized with an image

31

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

of the university logo. The memory initialization file was obtained using the Python script
mentioned earlier.

Figure 10-12: VGA output at startup.

10.8.5) DE10-Lite GPIO

Calculating hamming distance between the first five and last five switches and
displaying the result on the seven segment display is done using the code below. The results
are shown in the image that follows it. Note that this code is running on a testing version of
the project where the seven segment display is connected to the contents of the x18 register,
not the address 0x200700XX.

32

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

Figure 10-13: The hamming distance calculation demo running on the FPGA

10.9) Demo

See figure 10-13 in subsection 10.8.5 to see how one of the software to be shown in
the demo (hamming distance between the first and last 5 switches) was tested and the results
were obtained. More software is planned to be presented at the demo, but the programming
for them has not been completed as of the writing of this report.

11. DISCUSSION:

It can be said that almost all main goals of this project and proposed methods were
successful with no major deviations of the methods discussed during the project proposal. The
exceptions are the SDRAM part where it was proposed to use the SDRAM chip on the FPGA
board for the main memory, and insufficient testing of the AI Accelerator on the FPGA. It
should be noted that even though the peripherals UART, SPI, and PWM have limited features,
team members had already clarified that these modules were optional for the purposes of this
project in the previous report and in earlier presentations. It could also be argued that the
development of software for the demo was left to the last-minute and it had to be rushed a
little bit.

The failure in completing the SDRAM comes down to these points:

● The SDRAM controller shipped with Intel Quartus Prime software did not
support the memory chip on the FPGA board.

● Their documentation of available open-source SDRAM controllers was
lacking.

● It is said that there exist legacy Altera SDRAM controllers that work with this
FPGA board, but we could not find them on the internet nor on the Aletra
website.

The AI Accelerator has been successfully tested on simulation, but it could not be
executed on the hardware even though the Quartus compiler did not produce any errors or

33

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

critical warnings related to the module. The reasons for this behavior are currently unknown
to the team members and this issue will continue to be worked on in the days leading to the
presentation.

Beside these, all work packages were developed, tested, and integrated as planned.

12. CONCLUSION:

The project has been an incredible journey toward understanding the inner workings
of CPUs and computers in general. Team members got to work on FPGA and learn about
ASIC implementation flow all the while they participated in the national competition part of
Teknofest and met people from the field.

The project aims to create a custom SoC with an extended 32-bit RISC-V CPU, that is
capable of generating display output over VGA and has SPI, UART, and PWM peripheral
modules. The SoC is equipped with an L1 cache system and supports 11 extra non-standard
instructions. Finally, a visual demo was developed for the final presentation

First, a non-standard 8-bit CPU was developed, simulated, and tested. Then an
IbexCore RISC-V CPU was tested first with a simple testing method and later with a more
sophisticated testing structure on simulation and in the real world on the FPGA board. After
that the memory system was built while simultaneously non-standard instructions were being
integrated. Then the peripherals were developed.

Then the team focused on preparing for the Teknofest competition including migrating
the project from Intel Altera based FPGA to a Xilinx FPGA to adhere to the competition's
specifications and then going to the competition.

Finally, the demo was prepared.

13. PLAN FOR FUTURE STUDIES:

Should the DE10-lite FPGA be used in future studies, it is important to be able to
utilize the 64MB SDRAM chip on the FPGA board. Even if the development will continue
with different FPGA boards, it would be beneficial to be able to utilize the SDRAM chip on
said chip.

The Teknofest competition is said to continue running in the next few years where the
competition specifications will not see major changes. And since the current form of the
project is compatible with the specifications but needs further developments, setting the
Teknofest competition as the goal for future works is viable.

Another important thing to do that the team members realized too late into the
development is that a GPIO communication module can be used to program the CPU without
requiring any intervention from Intel Quartus Prime. This would save a lot of testing time and
implementing a module for this purpose should be a priority in the future.

The OpenLane flow could be another point of focus for future studies. If a functional
GDS file can be obtained, the design can be sent to a semiconductor fab for manufacturing.

14. ASSESSMENT OF ENGINEERING COURSES:

34

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

In the Digital Logic Design course, we learned the most basic hardware abstraction
element; the gate, and how to use abstraction to build more complex hardware elements with
higher abstraction levels. This is a fundamental idea in hardware design found everywhere,
for example how we treated The Ibex Core as a logic element with inputs and outputs without
considering the logic inside of it.

In the Microprocessors course we had practice in working with microprocessors
directly using assembly. And we also took 3 programming courses in Python and C/C++,
with our good understanding of them we were able to learn how to use Verilog HDL easily.

In the Introduction to Formal Language and Automata Theory course we saw the
theory of finite automaton, pushdown automaton, and Turing Machine which all appear in a
processor.

Finally, we studied multiple mathematics and computer science courses which built
our knowledge and experience as computer engineers to be able to work on this project.

15. REFERENCES:

● Waterman, A. S. 2016. “Design of the RISC-V instruction set architecture.”
University of California, Berkeley.

● Asanović, K., Patterson, D. A. 2014. “Instruction Sets Should Be Free: The Case for
RISC-V.” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-146.

● Wilkes, M. V. 1965. “Slave memories and dynamic storage allocation.” IEEE
Transactions on Electronic Computers, (2), 270-271.

● Smith, A. J. 1982. “Cache memories”. ACM Computing Surveys (CSUR), 14(3),
473530.

● Patterson, D.A. and Hennessy, J.L. 2013. “Computer Organization and Design, The
Hardware/Software Interface” (5th ed.). Elsevier Inc.

● Stallings, W. 2015. “Computer Organization and Architecture Designing for
Performance” (10th ed.). Pearson Education.

● LaMeres, B, J. 2017 “Introduction to Logic Circuits & Logic Design with VHDL”
(1st ed.) . Springer.

● Snow, Z. 2019, February 8. “sv2v: SystemVerilog to Verilog” Retrieved June 8, 2023,
from https://github.com/zachjs/sv2v

● lowRISC. 2018. “Ibex RISC-V Core”. Retrieved June 8, 2023, from
https://github.com/lowRISC/ibex

35

https://github.com/zachjs/sv2v
https://github.com/lowRISC/ibex

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

16. PROJECT ACTIVITIES ANDWORK PLAN

Table 1 The Work-Activity Plan for Project 1

Work and
Activity
Project 1

Responsible
Group
Member

Timeline (in week number)

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

1. 8-bit CPU Amer - Yuşa
2. The
Ibex-Core

Amer - Yuşa

3. Testint the
Ibex Core

Amer - Yuşa

4. Non-standard
instructions

Yuşa

5. The request
routing unit

Amer

6. Main
Memory

Amer

7. L1 Cache Amer
8. Peripherals Yuşa
9. Demo Amer - Yuşa

Table 2 The Work-Activity Plan for Project 2

Work and
Activity
Project 2

Responsible
Group
Member

Timeline (in week number)

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

1. 8-bit CPU Amer - Yuşa
2. The
Ibex-Core

Amer - Yuşa

3. Test Software Amer - Yuşa
4. Non-standard
instructions

Yuşa

5. The request
routing unit

Amer

6. Main
Memory

Amer

7. L1 Cache Amer
8. Peripherals Yuşa
9. Demo Amer - Yuşa
Teknofest Amer - Yuşa
Red denotes time spent for or at Teknofest competition.

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

16.1 LIST OF WORK PACKAGES

Table 3 Detailed Definition of Work and Activity

WP
No

Detailed Definition of Work and Activity

1 This work packet consists of the design and development of a non-standard 8-bit
CPU and testing it with simulation and on the FPGA.

2
This work packet consists of the compilation, synthesis, programming, and running
The Ibex Core on simulation and on the FPGA. Including correctly mapping FPGA
pins to the CPU.

3 This work packet contains the successful testing of the Ibex core using a test
program.

4

This work packet consists of the integration of 11 non-standard instructions shown
in the report above into the ISA. These instructions include 6 instructions for
operations related to cryptography and 5 others for performing 2D convolution on
data.

5

This work packet consists of developing, testing and integrating a routing unit that
will be responsible to handle all the requests from CPU and directing control and
data signals to the appropriate interface units. These interface units include the main
memory, Cache, and peripherals interface.

6 This work packet consists of developing a main memory system which can simulate
SDRAM access delay while also allowing for programs to be uploaded online.

7

This work packet consists of developing an L1 cache and controller and integrating
it with The request routing unit to build a memory hierarchy and benefit from
high-speed on-chip memory to increase performance by lowering average memory
access delay.

8

This work packet consists of developing a VGA module, one or two peripheral
interfaces starting with SPI, PWM and if time permits UART. Each developed
interface will be connected with the CPU by modifying the request routing unit, and
will have a test routine to test its simple functionalities.

9
This work packet consists of developing the final demo of the project to be
presented to the faculty at the end of the project. The demo to be developed will be
an interactive demo with display output.

37

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

Table 4 Work package targets, their assessment, and the contribution of each work package to
the overall project success.

Work package Target Measurable outcome
Contributi

on to
overall

success(%)

1. 8-bit CPU Running a non-standard 8-bit
CPU on simulation and FPGA.

The successful execution of a
code segment with the
nonstandard CPU.

100

2. The Ibex-Core Running The Ibex Core on
simulation and FPGA.

The successful execution of a
code segment with the
nonstandard CPU.

100

3. Test Software Writing short programs to test
the hardware.

Software executes
successfully. 100

4. Non-standard
instructions

Integrating 11 non-standard
instructions to our CPU.

The successful execution of
the 11 non-standard
instructions within a test code.

100

5. The request
routing unit

Develop a request routing unit
to manage all CPU interface
requests with memory, cache,
and peripherals interface.

The successful routing of all
requests of a testing request
code per the processor’s
address map.

100

6. Main Memory

Developing main memory with
codes can be loaded easily, and
can simulate SDRAM access
delay.

The successful implementation
of the main memory using
BRAM and delay.

-

7. L1 Cache
Implementing an L1 Cache
for data stored in the main
memory.

The L1 Cache acts as a
memory level before the main
memory successfully.

100

8. Peripherals

Implementing a number of
peripherals interfaces from
the list (SPI, PWM, UART).
(This is an optional work
packet)

UART, SPI, and PWM can
transmit data in the correct
configuration, VGA can
display images, switches and
the bottom button can be read
from, seven segment displays
and LEDs can be controlled
with write operations.

optional
wp
60

9. Demo

Running a demo on the FPGA
that takes inputs from the user
and outputs a display signal
over VGA port.

The successful presentation of
the demo. 100

38

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

Table 5 The work package distribution to project team members: Who works on which work
package? Specify the percentage contributions.

WORK PACKAGE DISTRIBUTION
Project
Member

WP1 WP2 WP3 WP4 WP5 WP6 WP 7 WP 8 WP9

Amer 50 50 10 0 100 100 100 0 30
Yuşa 50 50 90 100 0 0 0 100 70

17. BUDGET
Table 6 Budget in TL

ITEMS
PEOPLE Instruments MATERIALS* SERVICE TRAVEL

IMU FUND 0 8500 0 0 0
SPONSOR
COMPANY FUND 0 0 0 0 0

TOTAL 0 8500 0 0 0

18. SUPPORT LETTERS

39

Istanbul Medipol University
School of Engineering and Natural Sciences

Graduation Project

CURRICULUM VITAE

40

