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Infrared  technology  (thermal  1maging
technology) Is a non-destructive assessment for
detecting and assessing the severity of a leak
by employing sensors to Identify the
wavelength of infrared light emitted from an
object's surface.
Figure 8: Example Thermal Image data. a-b i1s No Leak, c-d Leak cases
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A hybrid model 1s developed to
Identify leakages In 2 phase to
Increase the performance of the
system. In the first phase, the
metadata of the pipes IS being
tested on the decision tree and
then If the pipe Is classified as
‘Failure’ then the thermal image
of that pipe Is acquired and sent
to the CNN model to detect the
leakage.
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Age(AG) 106
Size(SZ) 458
C-Factor(CF) 86
BreakRate(BR) ©.332498
Performancelndex(PI) 4.67285
FailureProb(FP) ©.28287
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Name: pipeS6, dtype: object
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Figure 11: Accuracy and Loss Plot for 100 epochs
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Size(s2) 235
C-Factor(CF) 49
BreakRate(BR) 0.242485
Performancelndex(PI1) 4.72095
FailureProb(FP) 9.215325
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Image ID

Name: pipeb, dtype: objec

PREDICTION PROBABILITIES: [[1.4290332e-38 1.00000000400]] JPREDICTION PROBABILITIES: [[1.0000000+00 5.436888e-06] ]
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CONCLUSION

If this project could be adapted to real
world water, gas and other hydrocarbon
fluid networks, It will not only contribute
economically (reducing the cost for
digging and changing,
pipes), to several Institutions that operate
and control buried pipes, but also ensure
that leaks In pipes are detected early,
without the need for open Inspection
and before they become harmful to the

Figure 13: Sample output of leaking and not leaking case €nvironment and humanity.
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